

Bharati Vidyapeeth's

Matoshri Bayabai Shripatrao Kadam Kanya Mahavidyalaya, Kadegaon. Department of Microbiology

NOTICE

Date: 16/09/2023

Subject: Microbiology Day - Article Writing Competition

Dear Students,

We are delighted to inform you that the Department of Microbiology is organizing an exciting article writing competition in celebration of International Microorganism Day. This competition provides a unique platform for you to showcase your knowledge and passion for the field of microbiology.

The competition aims to foster creativity, critical thinking, and scientific communication skills among our students. We encourage all interested participants to submit their articles on the designated topics listed below. The best articles will be recognised and rewarded.

Here are the topics for the article writing competition:

- 1. "The Role of Microbes in Environmental Sustainability"
- 2. "Emerging Infectious Diseases: Challenges and Solutions"
- 3. "The Impact of Microbiome Research on Human Health"
- 4. "Antibiotic Resistance: A Growing Global Threat"
- 5. "Microbial Biotechnology: Innovations and Applications"
- 6. "Microbes in Food Production: From Farm to Fork"
- 7. "Microbial Diversity in Extreme Environments"
- 8. "The Fascinating World of Virology: From Basics to Pandemics"

Guidelines for participation:

- 1. Articles should be between 500 and 700 words.
- 2. Proper citations and references should be provided if external sources are used.
- 3. Articles should be submitted to Mr. J. V. Kuwar, Assistant Professor, Dept of Microbiology
- 4. Please include your name, class, and contact information in your submission.
- 5. Plagiarism will not be tolerated and it should be avoided.

Important Dates:

• Submission Deadline: 23rd September 2023

We encourage all students with an interest in microbiology to participate in this competition. It's an excellent opportunity to share your insights and contribute to the celebration of Microbiology Day. We look forward to receiving your engaging articles and celebrating the remarkable world of microbiology together.

Bharati Vidyapeeth's

Matoshri Bayabai Shripatrao Kadam Kanya Mahavidyalaya, Kadegaon. Department of Microbiology

Report on Microbiology Day - Article Writing Competition

Details of the Programme

- Title of the Activity: Microbiology Day Article Writing Competition
- Name of the Program Coordinator: Mr. J. V. Kuwar, Assistant Professor
- Organizing Department: Department of Microbiology
- **Number of Participants:** To be determined (TBD)
- Duration of the Program: TBD
- Day and Date: Thursday, 23rd September 2023

Purpose and Program Outcome:

The primary purpose of organizing the Microbiology Day - Article Writing Competition is to celebrate International Microorganism Day by providing students with a platform to showcase their knowledge and passion for microbiology. The competition aims to achieve the following outcomes:

- 1. **Foster Creativity:** Encourage students to think creatively about the diverse topics related to microbiology.
- 2. **Enhance Critical Thinking:** Stimulate critical thinking skills by analyzing and discussing complex microbiological concepts.
- 3. **Promote Scientific Communication:** Improve students' ability to communicate scientific ideas effectively through writing.
- 4. **Encourage Research and Citations:** Promote the use of proper citations and references, enhancing research skills.
- 5. **Raise Awareness:** Increase awareness and understanding of various microbiological topics among students and the broader community.

The Department of Microbiology invited all students with an interest in microbiology to participate in this exciting competition. It offered an excellent opportunity to share insights, learn, and contribute to the celebration of Microbiology Day.

I**/c. Principal** B.V.M.B.S.K. Kanya Mahavidyalaya Kadegaon,Dist. Sangli

Bharati Vidyapeeth's Matoshri Bayabai Shripatrao Kadam Kanya Mahavidyalaya, Kadegaon. Department of Microbiology

Page No. Date
Nome :- Pawar Srushti Ashok Class:- B.sc III (Micro) Subject:- Microbiology
The Role of Microbes in Enviormental Sustainability
Microorganisms are particular important waste water treatment which utilised the metabolic activity of Microbial population capable of degradation the two main objective
First Objective, The destroy all pathogenic microbes present in the sewage, particularly the organisms of the water bond disease Cough + typhoid.
Second objective, the breakdown the organic matter in the waste water so mostly Methane and Carbon dioxide, there by producing a final Inflow of out flow that can be safely discharged in the enviorment.
Microbial activities can also be employed in the degradation of man made compound. Enviormental biological control is farther area where microorganisms are employed in an effect produce our relans on synthetic chemical pesticicles.
Bacteria, fungi, protozoa and virus are cultivated to produce the biomass or cell product for the control of fugal, insect and nemotode pertis of agriculture crops along with source.
Microbes play a crucial role in envisonmental sustain- bility in various ways:
Microbes help break down organic matter such as dead plants and dead animals into nutrients that can be reused by other organisms. This process contributes to

Bharati Vidyapeeth's

Date
nutrient cycling and reused waste buildup.
2) Maste water:
Microbes are used in waste water treatment
plants to break down pollutants and organic materials ens-
uring that treated water can be safely released back into the
enviorment.
3) Soil Health:
Soil Microbes enhance soil Fertility by decompo-
sing organic matter. fixing nitrogen and aiding in nutrient
uptake by plants. Healthy soil support sustainable agriculture
4) Bioremediation:
Microbes can be employed to clean up cont-
aminated environments by breaking down or transforming
pollutants into less harmful substances. This is especially imp-
ortant for cleaning up oil spills and industrial water.
5) Nutrient Cycling:
Microbes are key players in the cycling of
essential nutrients like carbon, nitrogen and phosphorus. They help
maintain a balanced ecosystem by recycling these nutrients.
6) Symbiotic Relation. ships:
Microbes form symbiotic relationships
with plants (mycorrhizae) and animals (gut bacteria) aiding
in nutrient acquisition and digestion which contributes to
ecosystem by rebalance.
7) Climate Regulation 1-
Some microbes are involved in carbon
sequestration. helping to mitigate climate change by storing
Carbon in soil and oceans.
8) Bio energy Production:
Microbes are used in biofuel production
Converting organic materials into renewable energy sources
like biogas and bioethanol.

Bharati Vidyapeeth's Matoshri Bayabai Shripatrao Kadam Kanya Mahavidyalaya, Kadegaon. Department of Microbiology

Page No. Date
Ol Biological Deal Collaboration
9) Biological Pert Control:
harmful pests and reduce the need for chemical pesticides,
promoting sustainable agriculture paracides.
Overall, microbes one integral to maintaining the
balance and resillience of ecosystems, which is essential for
long term enviormental sustainability
Microbes are responsible both production and
destruction of foodstuffs and are key element in reducing
waste From spoilage. Some microorganisms can degrade
plastics, toxins, and agricultural waste, but some convert
excess fentilizer to nitrous oxide, a potent greenhouse gas.
Bacteria break down (or decompose) dead organism
animal waste and plant litter to obtain nutrients. But micro-
bes don't just eat nature's waste, they recycle it. The process
of decomposition releases chemicals (such as carbon, nitrogen,
and phosphorus) that can be used to build new plants and
animals.
To reduced the enviormental degradation caused
by chemicals, microbes can be used both as fentillisers and
perficides.

Bharati Vidyapeeth's

	Page No. Date: / /
	Name-Sonavane Rohini Rajesh
	B.Sc.III (Microbiology)
*	Microbes in food production, from farm to fork
* 1.	Farming and Agriculture:
	• Soil health -
	Microbes in the soil, such as bacteria and
	Fungi, help break down organic matter and
	make essential nutrients available to plants.
	• Plant Growth Production -
	some microbes, like mycrorrhizal fungi and
	certain bacteria form symbiotic relationship with
	plants, enhancing their growth and nutrient update
	Biological pest control-
	Benefical microbes can be used to control pests
	and diseases, reducing the need for chemical
	Pesticides.
* 2.	1
	• Fermentation -
	microbes like bacteria, yeast and molds are
	used in fermentation processes to produce various
	food and beverages, such as bread, cheese, yogur
	and beer.
	Food Preservation -
	Beneficial bacteria like lactic acid bacteria
	(LAB) & certain molds help preserve food
	through processes like pickling, curing and
	cheese again.
* 2.	food safety:
	• Pathogen control -
	Probiotic bacteria & bacteriaphages can be used
	to control harmful pathogen like solmonella & E. col

Bharati Vidyapeeth's Matoshri Bayabai Shripatrao Kadam Kanya Mahavidyalaya, Kadegaon. Department of Microbiology

		Page No.
	i mad	Date: / /
	in food products	
	• Food testing	0 1 01
	microbes are used in various test	
	& quality such as detecting spoila	ge or pathogen
×4.	Food Prackaging: Packaging:	
	 Modified Almosphere 	
	Packinging (MAP): microbes can b	e used to create spe
	cific gas compositions within food par	ckaging to shelf life.
*5	• food digestion:	
	• Gut microbiota:-inside our bodie	
	aid in digestion & nutrient absor	ption.
<u></u> ★6.	Food Waste Reduction:	
	• Composting —	1
-	Microbes are essential in the	decomponsation of
_	food processes, converting in into	nutrient rich soil
★7 .	food Allergen Reduction:	
_	• Enzymes: -	. I to I work I have
-	Microbial enzymes can be us allergenic proteins in certain food	ed to break down
-	allergenic proteins in certain Food	s, making them sake
4.0	for consumption by allergic indiv	Iduals.
*8	Probiotics & Health:	
-	• Probiotic food -	La that are large
_	These contains beneficial live micro	
40	Positive effect on digestive health	overall well-being
79.	Quality control:	ilu can inacal lha
-	• Sensory evalution: - Microbial activ	aking missolater and
	Flavour & groma of food Product m	arma micropiologica
*	testing crucial for maintaing quali	only involved in the
	In summary, microbes are not duction of a wide range of food but a	Ico inclooned by the
Dro	convition & even our own disation & has	alth organ managemen
LIE	servation & even our own disation & her	vital to oncure the
	microbial activity at each stage is	no viru to ensure the
90	ality & safety of food we consur	116.

Bharati Vidyapeeth's Iatoshri Bayabai Shripatrao Kadam Kanya Ma

	Date		
	Name- Salunkhe Dhanashri Shashik		
	B.Sc-III Microbiology		
*	Microbial Biotechnology: Innovation and Application.		
	Microbial biotechnology involves the use of microorganisms		
	(such as bacteria, fungi, and viruses) to develop products and		
	processes for various application. Here's a detailed overview of		
	microbial biotechnology innovation and its application.		
1.	Genetic Engineering and synthetic biology:		
•	Innovation in genetic engineering and synthetic biology have		
	enabled the modification of microorganism at the genetic level		
	This include the creation of genetically engineered strain		
	with specific traits, such as enhanced production of enzyme		
	or biofuels.		
2.	Industrial Fermentation:		
•	microbial fermentation is widely used in industries like food,		
	pharmaceuticals, and biofuels. innovation have improved the		
	efficiency and scalability of fermentation process, leading to higher		
	yields and reduced production costs.		
3.	Bioremediation:		
•	microbes are harnessed to clean up pollutants in soil and water		
	innovation include the development of specialized microbial		
	consortia that can break down various contaminants, including		
	oil spills and toxic chemicals.		
4.	Agricultural Biotechnology:		
•	microbes are used in agricultural to enhanced crop productivity,		
	reduce the need for chemical fertilizers and protect against pest		
	and disease innovation involve the development of microbial -		
	based biofertilizer and biopesticides.		
	·		

Bharati Vidyapeeth's

- 1	
	classmate Date Page
	·
5.	Pharmaceutical Production:
•	microbial biotechnology play a crucial role in the production of
	antibiotics, vaccines, and therapeutic protein innovation in this
	field include optimizing microbial strains for higher yields and
	improved product quality.
6.	Biofuel production:
•	microbes are used to convert biomass into biofuel like ethanol and
	biodiesel advances in metabolic engineering have led to more
	efficient microorganisms for biofuel production.
7.	Environmental Monitoring:
•	microbial sensors and biosensors are developed to monitor environ-
	mental parameters such as water quality and air pollution. these
	innovation provide real-time data for environmental management
8.	Bioplastics and Biodegrable Materials:
•	microbes can produce biodegrable plastics and material from
,	renewable resources. innovation in this area aim to replace
	traditional plastics with more eco-friendly alternatives.
9.	waste Treatment:
•	microbial biotechnology is used for waste water treatment and
	solid waste mangement. innovation include the development of
	anaerobic digestion process and microbial fuel cell for energy
	recovery.
10.	mining and metal Recovery:
•	microbes can be used to extract metal from ores, a process
	known as bioleaching. innovation in this field focus on improving
	the efficiency of metal recovery using microbial consortia.
_	These innovation have a significant impact on various indust-
	ries, promoting substainability, resource efficiency, and improved
~	health outcome. the ongoing research and development in micro-
	bial biotechnology continue to open new avenus for application
~	and discoveries.