INNOVATION IN SIMART AND TECHNOMATERIALS *Editors* Prin. (Dr.) M. M. Rajmane Prof. (Dr.) J. B. Thorat Dr. S. H. Pisal Dr. N.S. Harale Dr. I. A. Dhole PRARUP PUBLICATION, KOLHAPUR ## PP-77: Structural Properties of Lanthanum Doped Fe₃O₄ Thin Films N. D. Shelake¹, S. A. Mali¹, L. S. More¹, D. D. Patil¹, H. R. Ingawale², U. K. Mohite², J. S. Ghodhake³, S. J.Pawar⁴, T. J. Shinde¹ ¹Department of Physics, Smt. K. R.P. Kanya Mahavidyalaya, Islampur- 415409, Dist Sangli (MS) India ²Department of Physics, BVMBSK Kanya Mahavidyalaya, Kadegaon- 415304, Dist Sangli (MS) India ³Department of Physics, PVDP College ,Tasgaon- 416312, Dist Sangli (MS) India ⁴Department of Physics, VY College Peth Vadgaon- 416112, Dist Kolhapur (MS) India E. Mail: nehaaa2903@gmail.com Abstract: Thin films of Fe₃O₄ and lanthanum doped Fe₃O₄ nanomaterials were prepared by well known SILAR method. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) tools were used to characterize the nanomaterials. The presence of (220), (311), (400),(422),(511) and (440) planes in X- ray diffraction patterns of Fe₃O₄ and lanthanum doped Fe₃O₄ confirms the formation of cubic spinal structure without any ambiguity peak. Lattice constant of lanthanum doped Fe₃O₄ nanomaterial becomes lower whereas its crystallite size becomes higher than that of Fe₃O₄ nanomaterials. The presence of required absorption bands corresponding to Fe₃O₄ nanomaterials in the Fourier Transformation Infrared Spectra also confirms the formation of single cubic spinal structure. The absorption bands observed at 669cm⁻¹, 854cm⁻¹, 1020 cm⁻¹ and 1463 cm⁻¹ may be due to stretching vibration of La-O bond. Keywords: Fe₃O₄ nanomaterial thin films; SILAR Method; XRD; FTIR.