Seat	Total No. of Pages : 2
No.	

B.Sc. (Part - II) (Semester - III) (CBCS) Examination, January - 2023 MATHEMATICS

DSC - C5 : Real Analysis - I (Paper - V) Sub. Code: 73300

-	Day and Date : Monday, 30 - 01 - 2023 Time : 3.00 p.m. to 5.30 p.m.						
Instructions:		1) 2)	All questions are comp Figures to the right inc		•		
Q1) Selec	ct the	corre	ect alternative for eac	h of	the following: [10]		
a)	If f :	$R \rightarrow$	R is given by $f(x)$ =	= x t	hen f is		
	i)	injec	tion	ii)	surjection		
	iii)	bijec	etion	iv)	none of the above		
b)	The	set {x	$x \mid x < 7$ is the interval				
	i)	(0, 7))	ii)	(-∞,7)		
	iii)	[0, 7]	iv)	(-∞,7]		
c)	If A	$A = \{1, 2, \{3\}, (4, 5)\}$ then the number of elements in it is					
	i)	3		ii)	4		
	iii)	5		iv)	2		
d)	A fu	function $f: A \rightarrow B$ is called a one-one correspondence between A and					
	B, if	·	·				
	i)	fisc	one-one but not onto	ii)	f is one-one and onto		
		-			f is neither one-one nor onto		
e)	The		f rational numbers is				
	i)		ntable		Uncountable		
	iii)	Finit			None of these		
f) If A		is an _ in F		of R	R that is bounded below, then A has		
	i)	A gr	eatest lower bound				
	iii)	Leas	t upper bound	iv)	None of these		

	g)	Let	f be a real valued function	on de	escribed by $f(x) = x^2(-\infty < x < \infty)$.
	O,		$\inf f([0, 3)) = \underline{\hspace{1cm}}$, , , ,
			(0,9)	ii)	(0, 9]
		iii)	[0, 9)	iv)	[0, 9]
	h)	Eve	ry 1-1 correspondence is		·
		i)	one-one	ii)	onto
		iii)	countable	iv)	all i), ii), iii)
	i)	The	open interval (0, 1) is		<u></u> .
		i)	Countable uncountable	ii)	Uncountable
		iii)	Neither countable nor	iv)	Finite
	j)	The	Cartesian product of two	cour	ntable sets is
		i)	Countable uncountable	ii)	Uncountable
		iii)	Neither countable nor	iv)	Finite
Q2)	Atte	mpt <u>a</u>	any two of the following.		[20]
	a)	Defi	ne inverse function. If f :	$A \rightarrow$	B and $g: B \rightarrow C$ are functions and let
		H be	e a subset of C. Then show	v tha	$t (g^0 f)^{-1} (H) = f^{-1} (g^{-1} (H)).$
	b)	State	e Principal of Mathemat	ical	Induction. By using Mathematical
		indu	ection, prove that $1+2+3$	+	$n = \frac{n(n+1)}{2}.$
	c)	Prov	ve that the set of all rational	1 nur	mbers is countable.

Q3) Attempt any four of the following.

[20]

- a) If A and B are any two sets then prove that $(A \cup B)' = A' \cap B'$.
- b) If $f; R \to R$ be a function defined by f(x) = 3x + 7, then show that the function f is one-one and onto. Also find f^{-1} .
- c) Prove that for $n \in \mathbb{N}$, $a^n b^n$ is divisible by a b for all $n \in \mathbb{N}$.
- d) Prove that $n < 2^n$ for all $n \in \mathbb{N}$.
- e) Prove that the sets of even and odd natural numbers are countable.
- f) Find all values of x satisfying 3x-1=|x-7|.

X X X

Seat	
No.	

Total No. of Pages: 2

B.Sc. (Part - II) (Semester - III) (CBCS) (Revised)

Examination, February - 2023

MICROBIOLOGY (Paper-V)

DSC-C25: Microbial Physiology & Metabolism

Sub. Code: 73307

•	Day and Date: Wednesday, 01 - 02 - 2023 Γime : 2.30 p.m. to 4.30 p.m.						Total Marks: 50
Instr	uction	ns:	1)	All questions are compu	•		
			2)	Figures to the right indi	cate full marks.		
Q1)	Rew	rite t	he se	ntences by selecting co	orrect alternati	ve gi	iven below: [10]
	a)	Mic	robia	growth curve shows	a curve.		
	i)		Bell	shape		ii)	Hypertonic
		iii)	Para	bolic		iv)	sigmoidal
	b)	The	orga	nism that grows at bas	sic pH (8 to 11) is	called as
		i)	Neu	trophiles		ii)	Acidophiles
		iii)	Alka	lophiles		iv)	None of these
	c)	The	e growth rate and death rate are equal in phase.				phase.
		i)	log			ii)	lag
		iii)	stati	onary		iv)	Death
	d)	Shri	nkag	e of cell due to hyperte	onic solution i	s kn	nown as
		i)	Plas	moptysis		ii)	Plasmolysis
		iii)	Burs	ting		iv)	Swelling
	e)	In P	Preparatory phase of glycolysis consumes			molecules for	
		gluc	ose d	egradation.			
		i)	GTI)		ii)	ATP
		iii)	NAI	OH ₂		iv)	None of these
f)			is the general term for the anaerobic degradation of glucose of				
othe		othe	r org	anic nutrients.			
		i)	Ferr	nentation			
		ii)	Res	oiration			
		iii)	Oxio	lative phosphorylation	1		
		iv)		cophosphorylation	-		
		11)	1 110	ophosphol ylanon			

	g)	Red	uced respiratory activity occurs at	tem	perature.
		i)	high	ii)	low
		iii)	medium	iv)	none of these
	h)		is an example of hyperthermophiles.		
		i)	E.coli	ii)	Staphylococcus
		iii)	archea	iv)	Proteus
	i)		example of UV resistant bacteria.		
		i)	Micrococcus radiodurans		
		ii)	Boda marina		
		iii)	Halophilusendolithus		
		iv)	E.coli		
	j)	In _	transport mechanism solute is ch	emio	cally altered.
		i)	Diffusion	ii)	Active transport
		iii)	Group translocation	iv)	Passive diffusion
Q2)	Long	g ans	wers (Attempt any two)		[20]
	a)	Defi	ine growth. Enlist and describe different p	ohas	es of growth.
	b)	Wha	at is oxidative phosphorylation? Explain A	TP g	eneration by oxidative
		phos	sphorylation.		
	c)	Give	e an account on transport across cell men	nbra	ne.
Q3)	Shor	t No	tes: (Attempt any four)		[20]
	a)	Effe	ct of heavy metal.		
	b)	Dire	ect microscopic count.		
	c)	Syn	chronous growth.		
	d)	Hete	ero lactic acid fermentation.		
	e)	Sign	nificance of TCA.		
	f)	Che	mostat.		
			C3 C3 C3		

Seat	Total No. of Pages: 2
No.	

B.Sc. (Part - II) (Semester - III) (CBCS) Examination, February-2023

	DS	SC C26 : Applied	OBIOLO Microbiol Code : 7330	ogy (Paper - VI)
•		: Thursday, 02 - 02 - 2023 m. to 4.30 p.m.	3	Total Marks: 50
Instructio	ons:	 All questions are co Figures to the right 		narks.
	write rnativ		s by selecting	ng correct answers from given [10]
a)	The	coughing, sneezing and	forceful exp	iratory activities directly releases
	i)	dust	ii)	droplets
	ii)	droplet nuclei	iv)	infectious dust
b)		remain suspended by from the source of the		longer duration and settles far
	i)	Infectious Dust	ii)	Droplets
	iii)	Droplet nuclei	iv)	Good dust
c)	Dif	ferentiation of fecal and	nonfecal co	liforms is done by test.
	i)	MPN	ii)	SPC
	iii)	membrane filtration	iv)	IMViC
d)	α-n	aphthol solution is used	l in detection	n of
	i)	acid	ii)	acetoin
	iii)	citrate	iv)	indole
e)		test is used to check	k the efficier	ncy of milk pasteurization
	i)	Phosphatase	ii)	MPN
	iii)	Eijkman	iv)	MBRT

 i) Pseudomonas syncyanea ii) Pseudomonas putre iii) Serratia marcescens iv) Pseudomonas synxa g) The selected microbial strain for fermentation must give of the fermentation product. 	antha
g) The selected microbial strain for fermentation must give of the fermentation product.	
of the fermentation product.	yield
i) high ii) lower	
iii) lowest iv) low	
h) Vinegar production is best example of fermentation	on
i) Dual ii) Batch	
iii) Continuous iv) Batch and dual	
i) metabolites are involved in normal growth, de-	velopment
and reproduction.	
i) Primary ii) Secondary	
iii) Tertiary iv) Quaternary	
j) The precursor added in vitamin B12 fermentation is	·
i) MoCl ₂ ii) CaCl ₂	
iii) CoCl ₂ iv) ZnCl ₂	
Q2) Attempt any TWO of the following:	[20]
a) Explain municipal water purification process and its significan	nce.
b) Define screening. Explain primary screening programme.	
c) What is fermentor? Describe in detail typical fermentor with re	eference to
its parts and associated functions.	
Q3) Write a short note on any FOUR.	[20]
a) Infectious dust.	
b) Qualitative detection of coliforms.	
c) Enlist sources of microorganisms in milk.	
d) Dual and multiple fermentations.	
e) Precursors used in fermentation.	
f) Growth factors used in fermentation media.	

Seat	Total No. of Pages : 2
No.	

B.Sc. (Part - II), (Semester - III) Examination, January -2023 ZOOLOGY

DSC C15 : Animal Diversity-II (Paper-V) Subject Code: 73304

•	Oay and Date : Wednesday, 25 - 01 - 2023 Total Marks : 50 Time : 10.30 a.m. to 12.30 p.m.)
Instructions:		1) 2) 3)	All questions are compulsory. Figures to the right indicate full marks. Draw neat labelled diagrams wherever necesary.				
Q1) Sele	ect the	e corr	ect alternat	ive from the f	followi	ng. [10]]
a)	Wh	ich or	ganism of t	the following	is not	urochordate?	
	i)	Amp	phioxus		ii)	Phrynosoma	
	iii)	Hero	dmania		iv)	Doliolum	
b)	Am	phioxus obtains food by					
	i) Biti		Biting and chewing		ii)	Ciliary filter feeding	
	iii)	Scav	venging		iv)	Predation	
c)	The	tail f	in in scolio	odon is descri	ibed as		
	i)	Hete	erocercal		ii)	Homocercal	
	iii)	Dipl	hycercal		iv)	Protocercal	
d)	The	tail f	in in bony	fishes is desc	cribed a	as	
	i)	Prot	cocercal		ii)	Homocercal	
	iii) Diphycercal		iv)	Heterocercal			
e)	Wh	ich of	the follow	ing character	rs is tru	ne for birds	
	i)	Capa	able of fligl	ht	ii)	Body covered by feathers	
	iii)	Pnet	umatic bon	es	iv)	All of the above	

	f)	Eggs are large, mega-lecithal and calcareous shell is characteristic of								
		i)	Amphibia	ii)	Aves					
		iii)	Reptile	iv)	Mammal					
	g)	Amo	Among the mammals thepossess primitive characteristics like egg							
		layin	laying							
		i)	Prototherians	ii)	Eutherians					
		iii)	Metatherians	iv)	Placetotherian					
	h)		_are the pouched mammals.							
		i)	Monotrems	ii)	Marsupilians					
		iii)	Prototherians	iv)	Placentotherians					
	i)	With	n reference to parental care in A	mph	ibians, construction of nurseries					
		is sh	nown by							
		i)	Frog	ii)	Hyla					
		iii)	Salamander	iv)	Ichthyophis					
	j)	Eve	n after attaining sexual maturit	y, lar	val characters are retained. It is					
		knov	wn as							
		i)	Phylogenesis	ii)	Neoteny					
		iii)	Parthenogenesis	iv)	Ontogenesis					
Q2)		-	any two of the following.		[20]					
	a)	Give	e salient features of Agnatha ar	nd ad	d a note on Ostracodermi.					
	b)	Give	e an account of salient features	of cl	ass Amphibia and add a note on					
			er anura.							
	c)	Give	e an account on the distinguish	ing c	characteristics of venomous and					
		non-	-venomous snakes.							
O3)	Writ	e sho	ort note on (any four)		[20]					
QS)	a)		structure of <i>Labeo</i>		[20]					
	b)		eral characters of class Leptoc	ardi						
	c)		estive glands of birds.	uiui.						
	d)	_	ctivorous Mammals.							
	e)		ent feature of Myxine.							
	f)		•	& hor	ny fish					
	1)	Distinguish between cartilaginous & bony fish.								

Seat	I	Total No. of Pages : 2
No.		

B.Sc. (Part - II) (Semester - III) (CBCS) Examination, January- 2023 ZOOLOGY

		Z00Z001					
	DSC-C16: Biochemistry (Paper-VI) Sub. Code: 73304						
-	Day and Date : Friday, 27 - 01 - 2023 Total Marks : 50 Fime : 10.30 a.m. to 12.30 p.m.						
Instructio	nstructions: 1) All questions are compulsory. 2) Draw a neat labeled diagrams wherever necessary. 3) Figures to the right indicate full marks.						
Q1) Cho	ose c	correct alternative from the following:		[10]			
a)	The	e nitrogen bases found in DNA are ase	enine, c	cytosine, guanine, and			
	i)	uracil	ii)	thymine			
	iii)	inosine	iv)	pseudouridine			
b)	The	e sugar molecule and phosphate group	bonds i	s called bonds.			
	i)	phosphodiester bonds	ii)	glycosidic bonds			
	iii)	ester bonds	iv)	covalent bonds			
c)	The	e structure of DNA was first proposed	by	_ in 1953.			
	i)	Embden & Meyerhof	ii)	Watson and Crick			
	iii)	Morgan & Mendel	iv)	Franklin & Lamarck			
d)	The	e removal of amino group from the am	ino acio	ds is			
	i)	transamination	ii)	deamination			
	iii)	glycogenolysis	iv)	glycolysis			
e)	Syn cell	nthesis of carbamoyl phosphate takes pas.	lace in	the of the liver			
	i)	nucleus	ii)	mitochondria			
	iii)	Iysosomes	iv)	Golgi complex			
f)	The	e first enzyme discovered was amylase	e, by	·			
	i)	Anselem Payen	ii)	F.W. Kuhne			
	iii)	James Sumner	iv)	Edward Buchner P.T.O.			

	g) In enzyme reaction, is also called end-product inhibition.			oduct inhibition.		
		i)	Competitive inhibition			
		ii)	Non Competitive inhibition			
		iii)	Feedback inhibition			
		iv)	Allosteric Modulation			
	h)		is the net gain of ATP	during the cor	nversion of glucose t	0
		pyru	vate.			
		i)	2 ATP	ii)	4 ATP	
		iii)	6 ATP	iv)	1 ATP + 1 GTP	
	i)	The	enzymes of TCA cycle are lo	ocated in	_	
		i)	Ribosomes			
		ii)	endoplasmic reticulam			
		iii)	Golgi complex			
		iv)	matrix of mitochondria			
	j)	The	multiple forms of enzyme ir	the same orga	anism and with simila	ır
		activ	vity are			
		i)	Allosteric enzyme	ii)	Isoenzyme	
		iii)	Co enzymes	iv)	Pro-Enzyme	
()2)	A tto	mnt c	any TWO of the following.		[20	1
Q2)		-	at are nucleic acids? Give the	mologulor stru	_	J
	a)					
	b)	_	lain the various reactions invo		eb s cycle.	
	c)	Desc	cribe factors influencing enzy	me activity.		
Q3)	Solv	e any	four of the following:		[20]
	a)	Stru	cture of t-RNA			
	b)	FAS	Complex			
	c)	Dear	nination			
	d)	Locl	x & key hypothesis			
	e)		Enzymes			
	f)		ificance of ornithine cycle			
	,		•			

Seat	Total No. of Pages
No.	

B.Sc. (Part - II) (Semester - III) (CBCS) Examination, July - 2022 BOTANY

DSC D13: Embryology of Angiosperms (Paper - V) Sub. Code: 73303

				,	Sub. Co	ue.	13303	
-				day, 08 - 07 -	2022			Total Marks: 50
Insti	All questions are compulsory. 2) Figures to the right indicate full marks. 3) Draw neat and labeled diagrams wherever necessary.							
Q1)		rite nativ		Collowing so	entences 1	by se	electing correct ar	nswer from given [10]
	a)	<u>Cala</u>	atropi	<u>is</u> is pollina	ted by		_·	
		i)	wine	d		ii)	water	
		iii)	inse	ect		iv)	birds	
	b)	In _		_ both the r	nale game	etes t	ake part in the ferti	ilization process.
		i)	Meg	gasporogen	esis	ii)	Double fertilizatio	n
		iii)	Syn	igamy		iv)	Microsporogenes	is
	c)			is straight	ovule.			
		i)	Ortl	hrotropous		ii)	Anatropous	
		iii)	Circ	cinotropous		iv)	Amphitropous	
	d)	Wat	er po	ollinated pla	nts are ca	lled a	as	
		i)	Ane	emophilous		ii)	Ornithophilous	
		iii)	Hyd	drophilous		iv)	Entomophilous	
	e)	In a	ngios	sperms after	fertilizati	ion z	ygote is	
		i) iii)	_	oloid oloid		ii) iv)	Diploid Tetraploid	

	f)	The body of ovule is completely inverted in 180 degree ovule.				
		i)	Orthrotropous	ii)	Anatropous	
		iii)	Circinotropous	iv)	Amphitropous	
	g) is fibrous tissue in anther					
		i)	Epidermis	ii)	Tapetum	
		iii)	Endothecium	iv)	Intine	
	h) Transfer of pollen grains from an anther to the stigma of					
		knov	wn as			
		i)	Pollination	ii)	Fertilization	
		iii)	Megasporogenesis	iv)	Microsporogenesis	
	i)	Coc	us nucifera is the classical	l exa	mple of endosperm	
		i)	Helobial	ii)	Cellular	
		iii)	Nuclear	iv)	Apomixis	
	j)	The	endospermic nucleus is _		·	
		i)	Haploid	ii)	Diploid	
		iii)	Triploid	iv)	Tetraploid	
02)	A 44 -				[20]	
Q 2)		_	any two of the following		[20]	
	a)		ine pollination? Explain ty nple.	ypes	of pollination in brief with suitable	
	b)	Desc	cribe fertilization and entry	y of p	oollen tube in angiosperm.	
	c)	Exp	lain types of endosperms i	n an	giosperms.	
03)	Atte	mnt a	any four of the following.		[20]	
QU)	a)	-	ver structure.		[20]	
	b)		ination in <u>Vallisneria</u>			
	c)		n nature of flower			
	d)		ble fertilization its and sign	nifica	ance.	
	e)		nosporic and Bisporic emb			
	f)		tch and lable terasporangia	•	• •	
	-/		and racio total portains in			

X X X

	Total No. of Dogos .
eat	Total No. of Pages : 2

B.Sc. (Part - II) (Semester - III) (CBCS) Examination, January - 2023 **BOTANY**

DSC C14 . Dlant Dhygiology (Danor

	J	DSC		b. Code : '	73303	- V 1)
•			sday, 31 - 01 - 2 o 12.30 p.m.	2023		Total Marks: 50
Instruct	ions :	1) 2) 3)	All questions a Figures to the Draw neat lab	right indicate	•	nry.
Q1) Se	elect th	e corr	ect alternative	from the fo	llowing.	[10]
a)	The	shrir	nkage of proto	plasm due	to loss of water i	s called
	i)	Exo	osmosis	ii)	Endoosmosis	
	iii)	Plas	smolysis	iv)	Diffusion	
b)	Tra	nspira	ation mainly o	ccurs throu	gh	
	i)	Roc	ot	ii)	Stem	
	iii)	Leaf	f	iv)	Flower	
c)	Dur	ring d	ay time starch 	is converte	d in to glucose pl	hosphate by enzyme
	i)	Pho	sphatase	ii)	Carboxylase	
	iii)	Pho	sphorylase	iv)	Catalase	
d)	Dor	nnan e	equillium is _	upt	ake of mineral.	
	i)	Acti	ive	ii)	Passive	
	iii)	Posi	itive	iv)	Negative	
e)			are known as	protoplasm	nic elements.	
	i)	S, P	, N	ii)	N, P, K	
	iii)	C, N	N, O	iv)	Ca, N, P	
f)	Blo	ssom	end rot diseas	se is due to	deficiency of	•

ii) Iron

iii) Magnesium iv) Calcium

Phosphorus

i)

	g)	is important constituent of chlorophyll.				
		i)	Boron	ii)	Zinc	
		iii)	Magnesium	iv)	Calcium	
	h)	Phy	cocyanins are presnet in	l	algae.	
		i)	Blue Green	ii)	Red	
		iii)	Green	iv)	Yellow	
	i)	The	carbon dioxide accepto	r in C	AM plants is	
		i)	Malic acid	ii)	Oxalo acetic acid	
		iii)	Pyruvic acid	iv)	Phosphoenol pyruvic acid	
	j)	Mai	ze is an example of			
		i)	SDP	ii)	LDP	
		iii)	DNP	iv)	MDP	
Q2)	Atte	mpt a	any two of the following		[20]	
	a)	Give	e an account of passive u	ıptake	of minerals.	
	b)		at is photophosphorylation.	ation?	Explain the cyclic and noncyclic	
	c)	What is photoperiodism? Give the classification of plants based on photoperiodism.				
Q3)	Atte	mpt a	any four of the following	ζ.	[20]	
	a)	Osn	nosis			
	b)	Star	ch Sugar hypothesis			
	c)	Phy	siological role of calciun	n		
	d)	Sign	nificance of C4 Cycle			
	e)	Prac	ctical applications of GA			
	f)	App	lications of vernalization	1		

Seat	Total No. of Pages : 2
No.	

B.Sc. (Part - II) (Semester - III) (CBCS) Examination, February-2023 CHEMISTRY

	CHEMISTRY DSC - C3 : Physical Chemistry (Paper - V)							
	Sub. Code: 73302							
_	Day and Date : Friday, 03 - 02 - 2023 Γime : 10.30 a.m. to 12.30 p.m.							
Instructions: 1) All questions are compulsory. 2) Figures to the right indicate full marks. 3) Draw neat diagrams and give equations wherever necessary. 4) Use of scientific calculator and logarithmic table is allowed.								
Q1) A)	An	swer	the following in one se	entence.	[5]			
	a)	Giv	ve mathematical statem	ent of Hi	ttorf's rule.			
	b)	Wh	at is energy of activati	on?				
	c) Geiger - Muller counter is based on which property of nuclea radiation.							
	d)	Wr	ite mathematical equat	ion of mo	lar refractivity.			
	e)	Wh	nat are different types	of adsorp	tion.			
B)			the most correct alterna	ative for e	each of the following and rewrite [5]			
	a)		e device which is used known as	to detern	nine the surface tension of liquid			
		i)	refractometer	ii)	conductometer			
		iii)	voltmeter	iv)	stalagmometer			
	b)	On	dilution, equivalent co	onductivi	ty			
		i)	increases	ii)	decreases			
		iii)	tends to infinity	iv)	remains same			
	c)		ngmuir's adsorption isorption isotherm		takes the form of Freundlich			
		i)	at low pressure	ii)	at moderate pressure			
		iii)	at high pressure	iv)				
					<i>P.T.O.</i>			

Half life of third order reaction, $t_{1/2} =$ d) k / 0.693 ii) 0.693 / kiii) $3/2ka^2$ $2ka^2/3$ iv) The radioactive disintegration is an example of ______ order e) reaction. i) first third ii) iv) iii) second fourth

Q2) Attempt any two of the following:

[20]

- a) State Kohlrausch law. Give its mathematical equation. Discuss its applications.
 - i) To find the relation between ionic conductance and transport number.
 - ii) To determine degree of dissociation of weak electrolyte.
- b) What is third order reaction? Mention any two examples of it. Derive kinetic equation of third order reaction, $3A \rightarrow \text{products}$.
- c) Describe the principle, construction and working of Abbe's refractometer.
- d) What is adsorption? Derive the mathematical expression for Langmuir adsorption isotherm.

Q3) Answer any four of the following:

[20]

- a) In moving boundary experiment with 0.1 mol dm⁻³ KCI solution using 0.65 M LiCl solution as an indicator electrolyte, a constant current of 5.892mA was passed for 35.5 minutes. The boundary was observed to move through 5.6 cm in a tube of 1.142×10⁻⁵ m² cross section. Calculate transport number of K⁺ an C1⁻ions.
- b) What are the factors affecting on adsorption? Explain in brief.
- c) Mention types of radioactive equilibrium and explain any one of them with examples.
- d) The range of α particle from a particular radioactive element is 4.3 cm. Calculate the decay constant of radioactive element, if A=49.3 and B=-40.5 with half life in years.
- e) Explain the conductometric titration of strong acid with strong base.
- f) Describe Ostwald's Viscometer method for finding the viscosity of liquid.

Seat	
No.	

Total No. of Pages: 2

B.Sc. (Part - II) (Semester - III) (CBCS) (Revised)

Examination, February - 2023

			CHEMISTRY	Y				
		SC-	-C4 : Industrial Chemi	stry (Pa	per-VI)			
			Sub. Code: 733 (02				
•			arday, 04 - 02- 2023 o 12.30 p.m.		Total Marks: 50			
Instructio	ons:	1) 2) 3)	All questions are compulsory. Figures to the right indicates ful Draw a neat labeled diagram and		tions wherever necessary.			
Q1) A)	Ans	swer	the following in one sentence.		[5]			
	a)	Wh	ich are the raw materials obtain	ned from li	thosphere?			
	b)	Def	Define the term ore.					
	c)	Wh	What is electrochemical series?					
	d)	Wh	What is mean by zwitterionic detergent.					
	e)	Sul	phate pulping is also known as	s?				
B)	Sel	ect the correct alternative and rewrite the sentence again. [
a)		The number of of solute present in a known as molarity			one dm³ of solution is			
		i)	gram equivalents	ii)	equivalents			
		iii)	moles	iv)	grams			
	b)	The	e reboiler is also called					
		i)	distillation flask	ii)	condenser			
		iii)	receiver	iv)	none of the above			
	c)	The	e standard reduction electrode	potential o	of Zn is iron.			
		i)	equal to	ii)	less than			
		iii)	greater than	iv)	none of these			
					<i>P.T.O.</i>			

								50 - 10 7
	d)	In craft pulping for digestion chemicals used are						
		i)	Na ₂ SO ₄ & I	NaOH		ii)	MgO & NaOH
		i	ii)	Na ₂ CO ₃ & 2	NaOH		iv)	both (i) & (iii)
	e)							
		i)	Deriphat			ii)	teepol
		i	ii)	Igepon-T			iv)	both (i) & (ii)
Q2)	Atte	mpt an	ιу Ί	TWO of the fo	ollowing.			[20]
	a)	Expla	in	any five meth	nods of prot	ection of me	etals	from Corrosion.
	b)	What is distillation? Mention different types of distillation. Explain any one of them.						
	c)	Expla	in (chemical and	mechanical	l process use	ed in	pulp industry.
Q3)	Atte	mpt an	ıy F	FOUR of the	following.			[20]
	a)	What	are	the advantag	ges and disa	dvatages of	dete	ergent?
	b)	Describe the cleansing action of soap.						
	c)	Explain the features of good paper industry.						
	d)	Describe the metallic coating method for metal protection from corrosion. 25 mL of 3.0 M NaOH is mixed with 75 mL of 4.0 M NaOH. If the volume are additive, calculate the molarity of final mixture of mixed solution.						tection from corrosion.
	e)							
	f)	Defin	e th	ne following t	erms.			
		i) I	Nor	mality				
		ii) I	Mo	larity				
		iii) I	Mo	latity				
		iv) I	Par	ts per Million	Solution			

Parts per Billion Solution

Seat	Total No. of Pages : 2
No.	

B.Sc. (Part - II) (Semester - III) (CBCS) **Examination, January-2023 PHYSICS**

Ι

DSC-C1: Thermal Physics & Statistical Mechanics - I (Paper - V) Sub. Code: 73301								
•	Day and Date : Monday, 23 - 01 - 2023 Time : 2.30 p.m. to 4.00 p.m.							
Instructions:		2) Use of3) Figure	 Use of scientific calculator is allowed. Figures to the right indicate full marks. 					
Q1) Sel	ect th	e correct alte	ernative from the	e followi	ng. [10]			
a)	Me	chanical equ	ilibrium refers t	o the uni	formity of			
	i)	Pressure		ii)	Volume			
	iii)	Temperatur	re 💛	iv)	Entropy			
b)	Dui	ring isothern	nal process	ren	nains constant.			
	i)	volume		ii)	temperature			
	iii)	pressure		iv)	composition			
c)	In a	an irreversibl	le process, entre	ору				
	i)	increases		ii)	decreases			
	iii)	remains un	changed	iv)	none of these			
d)	Ent	tropy of the universe tends towards						
	i)	maximum		ii)	a constant			
	iii)	minimum		iv)	a negative value			
e)	The	he need for the finite diameter or size of the gas molecule was assumed						
	by							
	i)	Maxwell		ii)	Van der Waal			
	iii)	Boltzmann		iv)	Clausius			
f)	The	difference i	n molecular cor	ncentrati	on is gases gives rise to			
	i)	thermal cor	nductivity	ii)	diffusion			
	iii)	viscosity		iv)	none of these			
					<i>P.T.O.</i>			

	g)	The dependence of coefficient of viscosity η on the higher absolutemperature T of a gas is							
		i)	ηαΤ	ii)	$\eta \alpha T^{1/2}$				
		iii)	η α 1/Τ		$\eta \alpha T^2$				
h) In I			Fahrenheit scale the length between two fixed points is divided into equal parts.						
		i)	100	ii)	180				
		iii)	125	iv)	150				
	i)	If a	diatomic gas molecule has tra	nslat	ional, rotational and vibrational				
		deg	rees of freedom, then the ratio	of C	$_{\rm P}/{\rm C}_{\rm V}$, is				
		i)	1.29	ii)	1.40				
		iii)	1.33	iv)	1.67				
	j)	Viso	cosity of a gas is due to transp	ort o	f				
		i)	momentum	ii)	energy				
		iii)	mass	iv)	none of these				
O2)	Atte	mpt	any two of the following.		[20]				
(-)		1	\mathcal{L}						
C -)	a)	Whand	at is fundamental interval of temp	-	ure? Explain Fahrenheit, Rankine ate interconversion formula for				
(-)	a)	What and thes	at is fundamental interval of temperatures e scales.	e. St	ure? Explain Fahrenheit, Rankine ate interconversion formula for				
C -7	a)b)	What and these Der	at is fundamental interval of temperatures as a scales. ive expression for work done due	ring i	ure? Explain Fahrenheit, Rankine ate interconversion formula for sothermal and adiabatic process?				
	a)	What and these Der	at is fundamental interval of temperatures e scales.	ring i	ure? Explain Fahrenheit, Rankine ate interconversion formula for sothermal and adiabatic process?				
	a)b)c)	Whand thes Der Exp	at is fundamental interval of temperatures as a scales. ive expression for work done due	ring i	ure? Explain Fahrenheit, Rankine ate interconversion formula for sothermal and adiabatic process?				
	a)b)c)	Who and thes Der Exp	at is fundamental interval of temperatures are scales. ive expression for work done dualin working of the carnot's hear	ring i	ure? Explain Fahrenheit, Rankine rate interconversion formula for sothermal and adiabatic process? gine.				
	a) b) c) Atte	Who and thes Der Exp	at is fundamental interval of temperatures are scales. ive expression for work done dual alain working of the carnot's heat any four of the following.	ring i	ure? Explain Fahrenheit, Rankine ate interconversion formula for sothermal and adiabatic process? gine. [20] m resistance thermometer.				
	a) b) c) Atte	Who and thes Der Exp	at is fundamental interval of temperatures as cales. ive expression for work done durallain working of the carnot's heat any four of the following. e the principle and theory of place advantages and disadvantage.	ring intinumentinuments of the standard and the standard	ure? Explain Fahrenheit, Rankine ate interconversion formula for sothermal and adiabatic process? gine. [20] In resistance thermometer. In hermoelectric thermometer. In for monoatomic gas. Show that				
	a)b)c)Atternala)b)	Who and thes Der Exp	at is fundamental interval of temperature Reaumer scales of temperature se scales. ive expression for work done duralism working of the carnot's heat any four of the following. e the principle and theory of place advantages and disadvantage se law of equipartition of energy	ring intinument at engate	ure? Explain Fahrenheit, Rankine rate interconversion formula for sothermal and adiabatic process? gine. [20] In resistance thermometer. In hermoelectric thermometer. In for monoatomic gas. Show that 3.				
	a)b)c)Attea)b)c)	Who and thes Der Exp Exp Stat Stat the Giv	Reaumer scales of temperature se scales. ive expression for work done durable and four of the following. e the principle and theory of place advantages and disadvantage se law of equipartition of energy ratio of specific heats of a gas in the second specific heat specif	ring intinum s of to y and is 5/3 law	ure? Explain Fahrenheit, Rankine rate interconversion formula for sothermal and adiabatic process? gine. [20] In resistance thermometer. In hermoelectric thermometer. In for monoatomic gas. Show that 3. In of thermodynamics.				
	a) b) c) Atte a) b) c) d)	Who and these Der Expender Giv State Giv Der	Reaumer scales of temperature se scales. ive expression for work done durable and four of the following. e the principle and theory of place advantages and disadvantage are law of equipartition of energy ratio of specific heats of a gas are various statements of second	ring intinum s of to y and is 5/3 law	ure? Explain Fahrenheit, Rankine rate interconversion formula for sothermal and adiabatic process? gine. [20] In resistance thermometer. In hermoelectric thermometer. In for monoatomic gas. Show that 3. In of thermodynamics.				

The dependence of coefficient of viscosity $\boldsymbol{\eta}$ on the higher absolute

C	41								SG - 113 Total No. of Pages : 2	
Sea No.	- 1								Total No. of Tages . 2	
		Part .	- ID ((Semester	· - III) (CBCS) 1	Examii	nati	on, January - 2023	
D •.	· (1	tti t) (`	, ,	S (Pape			on, ouncing 2020	
				DSC-C2		` -		36	ĭ	
				DSC-C			_	CS -	1	
					Sub. C	ode: 733	001			
•				sday, 24 - 0 12.30 p.m					Total Marks: 50	
Instr	ructio	ons:	1) 2) 3)	All question Figures to Draw a ne	the right i	ndicates fu			essary.	
Q1)	Sele	ect Co	orrect	Alternative	e:				[10]	
a)		The	relat	ion betwe	en veloci	ity (V) of	f sound	way	ve, frequency (n) and	
		wav	_	gth (λ) is _	·					
		i)	V=						$V=n\lambda$	
			V=n						$V=n/\lambda$	
	b)		Beats are produced due to superposition of two							
		1)		nonic oscil						
		ii)		inear oscill		41.00				
		iii)		llations wi		different	t frequer	ncies	S	
	`	iv)		ar oscillatio		1 1:				
	c)			of superp				•••		
		i)		nogeneous	•				linear equations	
	1)	iii)		nogeneous		-			non-linear equations	
	d)	,			,	*	icient o	t abs	sorption then effective	
				g area (A)	1S	_ •		::)	. C	
		i)	S/a	3)				ii)	aS	
	2)		(a–S		*******	** -		iv)	a/S	
	e)	rna	se ve	locity of a	wave is	v =	•			

Lubrication results due to _____ property of fluid.

w/k

surface tension

iii) conductivity

iii) dw/dk

i)

i)

f)

iv) resistivity **P.T.O.**

ii) k/w

iv) dk/dw

ii) viscosity

	g)	Sabine in his experiment on reverberation time used organ pipe of a frequency						
		i)	612 Hz	ii)	512 Hz			
		iii)	315 Hz	iv)	412 Hz			
	h)	Peri	od of energy transfer (T) in coupled of	oscillatio	ons is $=$			
		i)	$2\pi/(\omega_1-\omega_2)$	ii)	$\pi/(\omega_1 - \omega_2)$			
		iii)	$4\pi/(\omega_1-\omega_2)$	iv)	$3\pi/(\omega_1 - \omega_2)$			
	i)	The	Unit of the air pressure is	•				
		i)	torr	ii)	meter			
		iii)	second	iv)	ampere			
	j)		tolerable leak rate is of pumsure (P)	nping sp	eed (S) and operating			
		i)	product	ii)	summation			
		iii)	subtraction	iv)	division			
Q2)	Long	g ans	wer Type Questions (Any Two)		[20]			
- /	a)	Discuss analytically, the superposition of two collinear harmonic oscillations having equal frequencies and hence obtain an equation of resultant displacement, amplitude and phase constant.						
	b)	Derive an expression for two angular frequencies involved in coupled oscillation of two simple pendulum.						
	c)	What is coefficient of viscosity of liquid? Explain Poiseuille's experiment of determining rate of flow of liquid through a capillary.						
Q3)	Shor	t Ans	swer Type Questions (Any Four)		[20]			
• ,	a)		te a note on optimum reverberation tin	ne.	. ,			
	b)		e different methods of producing low		e.			
	c)		te a note on musical notes.	•				
	d)	State	e any five properties of ultrasonic way	ves.				
	e)		lain the terms					
	•	i)	Streamline flow					
		ii)	Turbulent flow					
	f)	Disc	cuss normal modes of vibration of a s	tretched	string.			