Seat	
No.	

B.Sc. (Part-III) (Semester-V) (CBCS) Examination, October - 2023 ENGLISH (Compulsory)

Ability Enhancement Compulsory Course English for Communication (Paper-III)

	Communication (Paper-III) Sub. Code: 79671					
	Oay and Date : Tuesday, 31 -10 - 2023 Total Marks :40 Time :10.30 a.m. to 12.30 p.m.					
Instructio	ons:	1) 2)	All questions are comp Figures to the right in		narks.	
Q1) A)	Rev	vrite t	the following, choosing	ng the corre	ect alternative: [3]	
	a)		e poem 'Enterprise' o	lescribes a	a journey towards a	
		i)	Strange	ii)	Нарру	
		iii)	Metaphorical	iv)	Adventurous	
	b)		the fable 'The Ant	and the	Grasshopper', the ant stands	
		i)	Hard work	ii)	Idleness	
		ii)	Enjoyment	iv)	kindness	
	c)	Wil	liam Morris studied _		for more than thirty years.	
		i)	Science fiction	ii)	Detective fiction	
		iii)	Historical fiction	iv)	Mystery fiction	
B)	Ans	wer t	the following question	ns in one v	word/ phrase /sentence each. [3]	
	a)	Wh	Which award did Sudha Murty receive from Bhopal?			
	b)	Wh	What did the butterfly cover under its wings?			
	c)		w does, according to he Pilgrims?	the poet F	aiz Ahmad Faiz, the devotee go	
					$\mathbf{D} \mathbf{T} \mathbf{A}$	

- **Q2**) A) Answer the following questions in 3 to 4 Sentences each. (2 out of 3)[4] How was the end of the journey in the poem 'Enterprise? b) What was the cause of George's worry in the story? How did William Morris work closely with Miss. Suskind and Mr. c) Regnier to solve the problem? Write a short note on the following in about 7 to 8 sentences. (1 out of 2) [4] Significance of the title 'Forgeting Our Own History'. a) Theme of the poem, 'For Your Lanes, My Country'. b) Do as directed. C) [2] Write Noun form of the following word. Exalt Give the synonyms of the following word. b) Pleasure Imagine that you are going to attend the interview for the post of a sales **Q3**) a) manager in a well reputed company. Prepare a mock interview of it. [8] OR Write a note on different stages of preparation for the interview. b) Write an email to the municipal corporation complaining about the bad condition of the roads in your area. [8] OR Share your experiences about participation in a NSS residential camp.
- Write a well organized paragraph on "My first experience of Voting".[8] **Q4**) OR

Write a report about your participation in a cultural event.

Total No. of Pages :3

Total Marks: 40

Seat No.

B.Sc. (Part-III) (Semester-V) (CBCS) Examination, October - 2023 **PHYSICS**

DSE-E1: Mathematical Physics (Paper-IX)

Sub. Code: 79677

Day and Date : Monday, 23 - 10- 2023	
Time: 10.30 a.m. to 12.30 p.m.	

Instructions: 1) All questions are compulsory.

> 2) Use of Scientific calculator is allowed.

Q1)	Select the	correct a	lternatives:
-----	------------	-----------	--------------

[8]

- Every partial differential equation involves at least independent a) variables.
 - i) 2

iii) 3

- ii) 1 iv) None of these
- To solve the equation $\frac{\partial^2 u}{\partial x^2} = k \frac{\partial u}{\partial t}$ by method of separation variables we assume the solution in the form

i)
$$u(x,t) = X(x)Y(y)$$

ii)
$$u(x,t) = X(x)T(t)$$

iii)
$$u(x,t) = \frac{X(x)}{T(t)}$$

iv)
$$u(x,t) = kX(x)T(t)$$

- The Bessel's equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 n^2)y = 0$ has regular singularity at
 - i) $x = \infty$

iii) x = 1

- Legendre's differential equation has general solution in the form _____ d)
 - i) $y = AP_n(x)$

- ii) $y = BQ_n(x)$
- iii) $y = AP_n(x) + BP_n(x)$ iv) $y = AP_n(x) BP_n(x)$

- e) Which is the following is false?
 - $\Gamma(1) = 1$ i)

- ii) $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
- iii) $\beta(3,4) = \beta(4,3)$
- iv) $\Gamma(n) = n!$
- $\beta(m,n+1) + \beta(m+1,n) = \underline{\hspace{1cm}}$
 - $\frac{m}{m+n}\beta(m,n)$
- ii) $\frac{n}{m+n}\beta(m,n)$

 $\beta(m,n)$

- The modulus of complex number $2(\sqrt{3}+i)$ is _____ g)

 $2\sqrt{3}$ iii)

- iv) 5
- Cauchy-Riemann conditions for a function f(z) = u + iv to be analytic
- iii) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
- $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y}$ ii) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$ $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$ iv) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}$
- Q2) Attempt any two of the following.

- [16]
- Solve Wave Equation $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$ in two dimension by variable a) separable method.
- Define error function and complementary error function. Show that:
 - erf(x) = 0
 - $erf(\infty) = 1$
 - erf(x) = -erf(x)
- If Z_1 and Z_2 are two complex numbers then explain $Z_1 \times Z_2$ and $\frac{Z_1}{Z_2}$ by geometry.

Q3) Attempt any four of the following.

[16]

Define order and degree of partial differential equation. Find the degree and order of following equations.

i)
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$$

ii) $\frac{\partial^2 z}{\partial x^2} = k \frac{\partial z}{\partial y}$

ii)
$$\frac{\partial^2 z}{\partial x^2} = k \frac{\partial z}{\partial y}$$

- Define linear and nonlinear partial differential equation. Give suitable example of either linear or nonlinear.
- Find the singularities of following differential equation. c)

i)
$$2x^{2}\frac{d^{2}y}{dx^{2}} + 7x(x+1)\frac{dy}{dx} + 3y = 0$$

ii)
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - 4)y = 0$$

- Derive Legendre's Polynomial of first kind of first four polynomial. d)
- Prove any two properties of gamma function. e)
- Prove that $\log z = \log |z| + i \arg z$, hence find the value of $\log i$. f)

Seat	Total No. of Pages : 2
No.	
LIVO. I	

B.Sc. (Part-III) (Semester - V) (CBCS) Examination, October - 2023 PHYSICS

Quantum Mechanics (Paper-X) Sub. Code: 79678						
			dnesday, 25- 10 12.30 p.m.	- 2023		Total Marks :40
Instructio	ns:	1) 2) 3)	Figures to the r	right indicate	full m	narks. vherever necessary.
Q1) Sele	ect co	rrect	alternative:			[8]
a)			ciple that all m		artic	les have both wave and particle
	i)		gularity	•	ii)	 Duality
	iii)	Tria	ality	N.C	iv)	Infinality
b)	In t	he pr	obablistic inter	pretation of	wave	e function (ψ) , the quantity $(\psi)^2$
	is _					
	i)	a pr	obability densi	ty	ii)	a probability amplitude
	iii)	a ne	gative probabil	lity	iv)	a probability current density
c)	The	quar	ntum mechanic	al propertie	s of _	must be single-valued,
	fini	te and	d continuous			
	i)	Obs	servables		ii)	Expectation values
	iii)	War	velengths		iv)	Wave functions
d)	If tv	wo oj	perators and	l B commute	e the	n
	i)	ÂÉ	$\hat{\mathbf{B}} + \hat{\mathbf{B}} \hat{\mathbf{A}} = 0$		ii)	$\hat{\mathbf{A}}\hat{\mathbf{B}}-i\hat{\mathbf{B}}\hat{\mathbf{A}}=0$
	iii)	ÂÊ	$\hat{\mathbf{B}} - \hat{\mathbf{B}} \hat{\mathbf{A}} = 0$		iv)	$\hat{A} \hat{B} / \hat{B} \hat{A} = 1$
e)	The		cept of matter	wave was si	ıgges	
•	i)		senberg		ii)	de Broglie
	iii)	Sch	rodinger		iv)	Newton

	f)	The ladder lowering operator (L-). is defined as						
		i)	$L_x + iL_y$	ii)	$L_x + L_y$			
		iii)	$L_x - iL_y$	iv)	$iL_x + iL_y$			
	g)	In H	lydrogen atom, the potential en	ergy	is dimensional.			
		i)	one	ii)	two			
	C	iii)	three	iv)	n			
	h)		ere exist more than one eigen fundaments of the contract of th		on corresponding to same energy to be			
		i)	Non degenerate	ii)	Degenerate			
		iii)	Discrete	iv)	Continuum			
Q2)	Atte	mpt a	any two of the following:		[16]			
	a)		ve Schrodinger's time depended dimension.	ent w	ave equation for matter wave in			
	b)	Obtain expressions for operators L_x , L_y and L_z in cartesian co-ordinates.						
	c)	Usin		n deri	ve the energy eigen values for a			
Q3)	Atte	mpt a	any four of the following:		[16]			
	a)	Writ	te a note on: Barrier Penetration					
	b)	Exp	lain the concept of wave packe	t.				
	c)	State	e and explain uncertainty princi	ple.				
	d)	Obta	ain relation between group velo	city a	and particle velocity.			
	e)	Writ	te a note on: Normalization of w	ave 1	functions.			
	f)				for linear momentum operator.			

Seat	
No.	

Total No. of Pages: 3

B.Sc. (Part - III) (Semester - V) (CBCS) **Examination, October - 2023** PHYSICS (Paper - XI)

	CI	assi	cal		d Classic Code : 7967	al Electrodynamics 19
-				day, 27 - 10 - 2023 o 12.30 p.m.		Total Marks : 40
Instru	iction	as:	1) 2) 3) 4)	All questions are co Figures to the right Draw neat labelled Use of calculator or	indicate full r diagrams wh	erever necessary.
Q1) :	Seled	ct the	corı	rect alternative :	, m	[8]
i	a)		•	stem of N partic of degrees of freed	_	independent of each other, the
		i)	N		ii)	2N
		iii)	3N	•	iv)	4N
1	b)			onstraints are introd	luced into a s	system, its number of degrees of
		i)	dec	reased	ii)	increased
		iii)	rem	nains same	iv)	either increased or decreased
(c)	The	Lag	rangian function L	is defined b	у
		i)	T+V	V	ii)	T-V
		iii)	V-	Γ	iv)	T/V

d)		constraints are time independent constraints.								
	a)	scelerenomous	b)	rheonomous						
	c)	holonomic	d)	nonholonomic						
e) (Har	milton's principle is	_ prin	ciple.						
	a)	differential	b)	algebraic						
	c)	integral	d)	virtual						
f)	The	inertial frame of reference is _		<u></u> .						
	a)	an accelerated	b)	an unaccelerated						
	c)	a rotating	d)	an oscillating						
g)	Acc	eording to Einstein, velocity of	light	in free space is						
	a)	dependent of direction of pro	paga	tion						
	b)	variable								
	c)	constant								
	d)	infinite								
h)	Lap	lace's equation is valid in		_ (5						
	a)	charge free region		40)						
	b)	uniform charge distribution								
	c)	nonuniform charge distribution	n							
	d)	polarised charges								

Q2) Attempt any two.

[16]

- a) Obtain Lagrange's equation from D' Alembert's principle.
- b) Explain Brachistochrone problem.
- c) Describe Michelson Morley experiment.

Q3) Attempt any four.

[16]

- a) Derive formula for law of relativistic addition of velocities.
- b) Derive Mass Energy relation.
- c) Derive Poisson's and Laplace's equation.
- d) Write a note on Atwood's machine.
- e) Show that shortest distance between any two points is straight line.
- f) Deduce an expression for variation of length with velocity.

			_
l'ntal	No	of Pages	• 7.

Seat	
No.	

B.Sc. (Part-III) (Semester-V) Examination, October - 2023 PHYSICS

$\textbf{Digital and Analog Circuits and Instrumentation} \ (\textbf{Paper-XII})$

		Sub.	Code : 7968	80			
		:Monday 30 - 10- 2023 .m. to 12.30 p.m.		Total Marks: 40			
Instructions:		 All questions are of Figures to the right Draw the neat dist Use of Scientific contraction 	er necessary.				
Q1) Se	lect th	e Correct Alternative.		[8]			
a)	Idea	al Op-Amp has	output imped	ance.			
	i)	zero	ii)	finite			
	iii)	large	iv)	infinite			
b)	The	e frequency at whichfrequency.	h voltage ga	in becomes one is called as			
	i)	unit	ii)	average			
	iii)	unit gain	iv)	standard			
c) Asta		able multivibrator is ca	alled as	_multivibrator.			
	i)	one shot	ii)	free running			
	iii)	monostable	iv)	bistable			
d)	In d	ifferential amplifier, the input is applied between					
	i)	two bases	ii)	two emitters			
	iii)	base and ground	iv)	collector and base			
e)	Tan	nk circuit producesoscillations.					
	i)	sinusoidal	ii)	square			
	iii)	undamped	iv)	damped			

								5 IV1-43		
	f)	In phase shift oscillator, the feedback factor is								
		i)	1/10			ii)	1/20			
		iii)	1/25			iv)	1/29			
	g)	AND output is high, when				•				
		i)	any input is hi	gh		ii)	any input is low			
		iii)	both inputs are	e high		iv)	both inputs are low			
	h)	The binary codes 0 and 1 represents					respectively.			
	O	i)	low and high			ii)	high and low			
		iii)	high and high			iv)	low and low			
Q2)	Atte	_	any two.					[16]		
	a)	_	lain the block of	_				.1 1.11		
	b)			al amplifi	ier? Ex	plaın	its different types wi	th suitable		
	a)	_	grams.	Morgan	'a Thac	rome				
	c)	Stati	e and prove De	violgan	STHEC	n ems				
Q3)	Atte	mpt a	any four.		(0)			[16]		
	a)	-	te a note on hal	f adder.						
	b)	Give	e distinguishing	points bet	tween a	stabl	e and monostable mul	tivibrators.		
	c)	Explain with a neat diagram, crystal oscillator.								
	d)	What is flip-flop? Explain the truth table for the R-S flip-flop.								
	e)	Draw pin configuration of IC-555 and describe in short functions of each pin.								
	f)	In Colpitt's oscillator circuit, if $C_1 = 0.1 \mu F$, $C_2 = 0.01 \mu F$, and $L = 50 \text{ mH}$								
		are given, then find the frequency of oscillation.								
						76	089			