Total	No.	of Pages	:	3
Iviai	110.	or rages	•	\mathbf{J}

Seat	
No.	

B.Sc. (Part - III) (Semester - V) (CBCS) Examination, January - 2023 ENGLISH (Compulsory) (Paper - III) English for Communication

			Sub. Code:	7967	' 1	
=	Oay and Date : Saturday, 07 - 01 - 2023 Total Marks : 4 Total Marks : 4					
Instructions:		1) 2)	All questions are compulsor Figures to the right indicate	narks.		
Q1) A) Choose the appropriate answer and				d com	riplete the following sentences. [3]	
	a) The devotees, in our country, she eyes lowered and body couched					
		i)	happiness	ii)	fear	
		iii)	anxiety	iv)	terror	
b)		For more than thirty years Morris l			has made a study of	
		i)	detective fiction	ii)	his shortcomings	
		iii)	safety measures	iv)	jewellery shops	
	c)	According to Sudha Murty,economic standing.			is inversely proportional to	
		i)	writing	ii)	travelling	
		iii)	conversation	iv)	reading	
B)	Ans	Answer the following questions in one word/phrase/sentence each				
	a) Who are William Morris's favorite writers?				writers?	
	b)	Whom did the pilgrims or travellers lose?				
	c)	Which award did Sudha Murty receive from Bhopal?				

- Q2) A) Answer the following questions in three to four lines each. (2 out of 3)
 - a) What was the cause of George's worry in the story?
 - b) Who were the incredible women in Indian history referred by Sudha Murty?
 - c) How was the first stage of pilgrimage?
 - B) Write a short note on the following in about 7-8 sentences. (any one)[4]
 - a) The American
 - b) "Enterprise" as a social satire
 - C) Do as directed.

[2]

- a) Write the noun form of the word "beautiful"
- b) Give antonyms of "honest"
- Q3) A) a) Suppose you have been called for an interview for the post of Chemist. Write a piece of conversation between you and the interviewer. [8]

OR

b) Read the following advertisement carefully and answer the questions given below the advertisement. [8]

A Fast Growing Pharma Allopathic Company
AREA SALES MANAGER - 02 Posts

HQ - Pune (Independent working)

Candidates must have 3-5 years' experience in

Pharmaceutical industry as an M.R. or Area Manager.

Walk in for interview on SUNDAY

Date 22nd Sept., 2019 between 09.00 to 02.00 p.m. at

Hotel Natraj, Pune-Bangalore Road, Pune.

Director, Lifeline Health Care Pvt. Ltd.,

Pune, Cell No. 8050399456

- i) What certificates will you take with if you are called for an interview for the post of area sales manager?
- ii) Suppose you do not have any working experience, how will you answer the question about it?
- iii) How will you explain you strong points to the interviewers?
- iv) How will you introduce yourself?
- B) a) Suppose you participated in a N.S.S. residential camp for seven days. Write a Personal Blog describing your experiences there. [8]

OR

- b) Write an email to Municipal Corporation complaining about the bad condition of the roads in your area.
- **Q4**) A) Write a report about your participation in a Cultural Event. [8]

OR

B) Write a well-organized paragraph on 'My First Experience of Travelling by Train'.

Seat No.

Total No. of Pages: 3

B.Sc. (Part-III) (Semester - V) (CBCS) Examination, January - 2023 **PHYSICS**

DSE - E1 : Mathematical Physics (Paper - IX)

Sub. Code: 79677

Total Marks: 40 Day and Date : Tuesday, 03 - 01 - 2023

Time: 2.30 p.m. to 4.30 p.m.

All questions are compulsory. **Instructions:** 1)

> 2) Use of scientific calculator is allowed.

Q1) Choose the correct alternatives.

[8]

- Every partial differential equation involves at least independent a) variables.
 - i) 1

ii) 2

3 ii)

- iv) 4
- The three-dimensional Laplace equation is given by_____. b)

i)
$$\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} + \frac{\partial^3 u}{\partial z^3} = 0$$
 ii)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

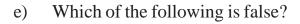
ii)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

iii)
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$$
 iv) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial t^2}$

iv)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial t^2}$$

- The method of separation of variables converts the given partial differential c) equation into______Differential equation.
 - i) partial

partial ordinary ii)


ordinary iii)

- iv) none of these
- Legendre's differential equation has general solution in the form_____. d)
 - i) $y = A P_n(x)$

ii)
$$y = B Q_n(x)$$

iii)
$$y = A P_n(x) + B Q_n(x)$$
 iv) $y = A P_n(x) - B Q_n(x)$

iv)
$$y = A P_n(x) - B Q_n(x)$$

i)
$$\boxed{1} = 1$$

ii)
$$\frac{1}{2} = \sqrt{\pi}$$

iii)
$$\beta(3, 4) = \beta(4, 3)$$
 iv) $n = n!$

iv)
$$n = n!$$

f)
$$erf(x) + erf_{c}(x) = ____.$$

iii) 0 iv) none of these

g) The argument of complex number
$$-1 - \sqrt{3}i$$
 is _____.

i)
$$\frac{\pi}{3}$$

ii)
$$\frac{2\pi}{3}$$

iii)
$$\frac{4\pi}{3}$$

iv)
$$\frac{5\pi}{6}$$

h) To solve the equation
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$
 by method of separation of variables, we assume the solution in the form $u(x, y, z) =$ _____.

- X(x) Y(y) Z(t)
- ii) X(x) Y(y)
- iii) X(x) Y(y) Z(z)
- iv) X(x) Z(z)

Q2) Attempt any two of the following.

[16]

- Obtain the solution of wave equation in two dimensions using variable a) separable method.
- What are properties of beta function? Show that b)

$$\beta(m,n) = 2\int_0^{\frac{\pi}{2}} \sin^{2m-1} x \cdot \cos^{2n-1} x dx$$

c) If
$$z_1$$
 and z_2 are two complex numbers then explain $z_1 \times z_2$ and $\frac{z_1}{z_2}$ by geometry.

Q3) Attempt any four of the following.

[16]

- a) Define Order and Degree of partial differential equation. State two examples.
- b) Explain in brief the method of solving following second order partial differential equation, $\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial x}{\partial t}$
- c) Define:
 - i) Ordinary point.
 - ii) regular singularities and
 - iii) irregular singularities of the second order differential equation.
 - iv) Find the singularities of the following differential equation.

1)
$$2x^2 \frac{d^2 y}{dx^2} + 7x(x+1) \frac{dy}{dx} + 3y = 0.$$

2)
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + x^2 - 4 = 0$$
.

- v) Define Gamma Function. Prove any two properties of it.
- vi) Represent the complex number $Z_1 \times Z_2$ geometrically for two complex number Z_1 and Z_2 .

Seat	
No.	

Total No. of Pages: 3

B.Sc. (Part - III) (Semester - V) (CBSC) Examination, January - 2023 PHYSICS

	D	SC -	- E2 : Qua Su	PHYSI ntum Mo ib. Code:	echan		· - X)	
-			dnesday, 04 - 0 4.30 p.m.	1 - 2023			Total Marks: 40	
Instructio	ns:	1) 2) 3) 4)	All questions are compulsory. Use of scientific calculator is allowed. Figures to the right indicate full marks. Draw neat and labelled diagrams wherever n			arks.	necessary.	
Q1) Sele	ect th	e corr	rect alternative	»:			[8]	
i)	The	de-E	Broglie hypoth	esis was ex	perime	ntally proved	l by	
	a)	Ein	stein's theory	of relativity				
	b)	Pla	nck's constant	t				
	c)	qua	ntum mechani	ics				
	d)	Dav	visson-Germer	experimen	t			
ii)	As	per d	e Broglie hypo	othesis, line	ear mon	nentum (P) is	S	
	a)	<i>ħ/</i> k	ζ.	b)	$\hbar \mathrm{w}$			
	c)	hk		d)	ħk			
iii)	The	Eige	en values of pa	arity operat	or are_	•		
	a)	0,+	1	b)	0,–1			
	c)	+1,-	-1	d)	+1,+2	2		
iv)	The	e wav	elength of ma	tter wave is	indepe	endent of	_•	
	a)	moı	mentum	b)	mass			
	c)	velo	ocity	d)	charg	;e		

	v)	v) The expectation value $\langle x \rangle$ of the position operator for a wave fu $\psi(x)$ tells you what?							
		a)	The most likely place to find the particle						
		b)	The least likely place to find the particle						
		c)	The position of the particle actually is						
		d)	The average value of the position you would get if you measured in multiple times						
	vi)	[z,]	$[\rho_z] = \underline{\hspace{1cm}}$.						
		a)	0 b) 1						
		c)	$i\hbar$ d) $-i\hbar$						
	vii)		ficient of transmission is defined as ratio of to current sities.						
		a)	incident, transmitted						
		b)	reflected, transmitted						
		c)	transmitted, incident						
		d)	incident, reflected						
	viii)	The energy spectrum of a particle in one dimensional rigid box has nature of							
		a)	infinite sequence of discrete energy levels						
		b)	infinite sequence of equidistance energy levels						
		c)	exponentially increasing						
		d)	exponentially decreasing						
Q2)	Atte	mpt a	any Two of the following [16]						
	a)		Derive Schrodinger's time dependent wave equation for one dimensional motion.						
	b)		State and explain uncertainty relation and show that electrons do not exist in the nucleus.						
	c)	Obtain the energy eigen values and normalized wave functions for motion							

SG-167

of a particle along x-axis in infinite potential well'

Q3) Attempt any Four of the following

[16]

- a) Show that, $[\hat{A}, [\hat{B}, \hat{C}]] + [\hat{B}, [\hat{C}, \hat{A}]] + [\hat{C}, [\hat{A}, \hat{B}]] = 0$
- b) Prove the relation, $[L_z, L_+] = \hbar L_+$
- c) Write note on Hamiltonian operator.
- d) Write note on Degenerate states of the energy levels of the particle in three-dimensional rigid box.
- e) Write note on orthogonal and normalization conditions of the wave functions.
- f) State the conditions that the wave function should satisfy.

Seat No.							SG - 175 Total No. of Pages : 2
	Par	t - III) (Semes	ster - V) (CBC PHYSI	ŕ	1ati	on, January - 2023
Class	sical	Mec	hanics a	and Classica Sub. Code:		yna	amics (Paper-XI)
•			ursday, 5 - o 4.30 p.m.	- 01 - 2023 ·			Total Marks: 40
Instruct	ions :	,	Figures Draw n	tions are compuls to the right indica eat labeled diagra cientific calculato	ates full marks.		ssary.
Q1) Se	elect	the cor	rect alterr	native.			[8]
a)			craints are		to the syster	n, r	number of degrees of
	i)	inc	creases			ii)	decreases
	111) ren	nains sam	e		iv)	become infinite
b)	T	he Prii	nciple of v	virtual work dea	als with	_ of	the system.
	i)	sta	tics			ii)	dynamics
	iii) kin	nematics			iv)	mechanics
c)			_ principle	e is an integral p	orinciple.		
	i)	D'	Alembert			ii)	Euler's

Brachistochrone problem is a shortest _____ problem.

All accelerated frames are _____ frames.

Hamilton's

distance

inertial

rest

iii) velocity

iii)

i)

i)

iii)

d)

e)

iv) Heisenberg's

non-inertial

time

iv) absolute

iv) path

ii)

ii)

	f)	The negative result of Michelson-Morley experiment was satisfactorily explained by hypothesis.							
		i)	emission	ii)	ether drug				
		iii)	partial ether drag	iv)	length contraction				
	g)	Ford	ce experienced by charge in electric and	d magne	etic fields is essentially				
		i)	Coulomb's force	ii)	Yukawa force				
		iii)	Newton's force	iv)	Lorentz's force				
	h)		charged particle's velocity is parallel to to ves in a	the mag	netic field then particle				
		i)	straight line	ii)	circular path				
		iii)	cycloid path	iv)	spiral path				
Q2)	Attea) b)	Der Des	any TWO. ive Lagrange's equations of motion fro cribe Michelson-Morley experiment. ge shift.						
	c)	Show that path followed by charged particle moving in uniform magnetic field is circle.							
Q3)	Atte	mpt :	any FOUR.		[16]				
	a)	Explain the term 'Degrees of freedom'.							
	b)	Obtain Newton's equation of motion from Lagrange's equations.							
	c)	Write a note on 'Atwoods machine'.							
	d)	State and explain Hamilton's principle.							
	e)	Show that shortest distance between any two points in a plane is a straight line.							
	f)	Der	ive integral form of Gauss law in electr	rostatic	S.				

CS CS CS

Seat	
No.	

Total No. of Pages: 2

B.Sc. (Part - III) (Semester - V) (CBCS) Examination, January-2023 PHYSICS (Paper-XII)

DSE-E4: Digital and Analog Circuits and Instrumentation Subject Code: 79680

•		: Friday, 06 - 01 n. to 4.30 p.m.	- 2023	Total Marks: 40		
Instructio	ons:	 All questions are compulsory. Figures to the right indicate full marks. Neat diagrams must be drawn whenever necessary. Use of calculators/logarithmic tables are allowed. 				
Q1) Sel	ect co	rrect alternative		[8]		
a)		is a logic cir	cuit that adds two b	inary digit at a time.		
	i)	full adder	ii)	half adder		
	iii)	flip flop	iv)	gates		
b)	For_	gate outpu	at is high when all it	s inputs are low.		
	i)	NOR	ii)	NAND		
	iii)	XOR	iv)	AND		
c)	In d	igital circuit	represents a binar	y low level.		
	i)	binary one	ii)	binary zero		
	iii)	binary two	iv)	binary infinite		
d)		current amplific	cation factor in a con	nmon emitter configuration is the		
		$\Delta I_{\rm E}/\Delta I_{\it B}$	ii) iv)	$\Delta { m I}_{\scriptscriptstyle B}$ / $\Delta { m I}_{\scriptscriptstyle E}$		
	iii)	$\Delta I_{C}/\Delta I_{B}$	iv)	$\Delta I_{\scriptscriptstyle C} / \Delta I_{\scriptscriptstyle E}$		
e)	Asta	able multivibrat	or hasstable s	tates.		
	i)	two	ii)	three		
	iii)	one	iv)	zero		

	f)	In CE transistor amplifier circuit input is applied toterminal of the transistor.							
		i)	base	ii)	emitter				
		iii)	collector	iv)	none of these				
	g)	The	arrangement of electrodes	which	n produce a focused beam of				
		elec	trons is called						
		i)	electron tube	ii)	electron gun				
		iii)	electric tube	iv)	soldering gun				
	h)	The	CRO is used to measure						
		i)	voltage	ii)	frequency				
		iii)	phase	iv)	all of above				
Q2)	Atte	mpt a	any Two of the following.		[16]				
	a)	Exp	lain NAND, NOR, Ex-OR and	IEX-N	NOR gate with its logic diagram.				
	b)	Draw the neat block diagram of CRO and explain the function of each block.							
	c)	Draw circuit diagram of astable multivibrator and explain its working. Find the frequency and duty cycle of this multivibrator.							
Q3)	Writ	e sho	ort notes on any four of the fol	lowin	g. [16]				
	a)	Explain NAND as a universal gate.							
	b)	Write a note on half adder.							
	c)	Write a note on crystal oscillator.							
	d)	Write a note on Lissajous figures with examples.							
	e)	State Characteristics of an ideal op-amp.							
	f)	Gives advantages and disadvantages of CE amplifier.							

B B B