					SM-58
Seat No.					Total No. of Pages : 2
	Part-1	III)	(Semester-V) (CBC ENGLISH (C		amination, October - 2023 Ilsory)
Ab	ility	En	-	•	V Course English for
1)	Communication Sub. Code	` '	
-			sday, 31 -10 - 2023 12.30 p.m.		Total Marks :40
Instructio	ns :	1) 2)	All questions are comput Figures to the right indic	•	narks.
Q1) A)	Rew	vrite t	he following, choosing	the corr	rect alternative: [3]
	a)		poem 'Enterprise' des cific goal.	cribes a	a journey towards a
		i)	Strange	ii)	Нарру
		iii)	Metaphorical	iv)	Adventurous
	b)		the fable 'The Ant ar	nd the	Grasshopper', the ant stands
		i)	Hard work	ii)	Idleness
		ii)	Enjoyment	iv)	kindness
	c)	Wil	liam Morris studied		_ for more than thirty years.
		i)	Science fiction	ii)	Detective fiction
		iii)	Historical fiction	iv)	Mystery fiction
B)	Ans	wer t	he following questions	in one	word/ phrase /sentence each. [3]
	a)	Wh	ich award did Sudha Mu	urty rec	eive from Bhopal?
	b)	Wh	at did the butterfly cove	r under	tits wings?
	c)		w does, according to the ne Pilgrims?	e poet F	Faiz Ahmad Faiz, the devotee go

P.T.O.

- Q2) A) Answer the following questions in 3 to 4 Sentences each. (2 out of 3)[4]
 - a) How was the end of the journey in the poem 'Enterprise?
 - b) What was the cause of George's worry in the story?
 - c) How did William Morris work closely with Miss. Suskind and Mr. Regnier to solve the problem?
 -) Write a short note on the following in about 7 to 8 sentences. (1 out of 2)
 - [4]

[2]

- a) Significance of the title ' Forgeting Our Own History'.
- b) Theme of the poem, 'For Your Lanes, My Country'.
- C) Do as directed.
 - a) Write Noun form of the following word.

Exalt

b) Give the synonyms of the following word.

Pleasure

Q3) a) Imagine that you are going to attend the interview for the post of a sales manager in a well reputed company. Prepare a mock interview of it. [8]

OR

Write a note on different stages of preparation for the interview.

b) Write an email to the municipal corporation complaining about the bad condition of the roads in your area. [8]

OR

Share your experiences about participation in a NSS residential camp.

Q4) Write a well organized paragraph on "My first experience of Voting".[8]

OR

Write a report about your participation in a cultural event.

-2-

SM-2 Total No. of Pages :2

Seat No.

B.Sc. (Part-III) (Semester-V) (CBCS) Examination, October - 2023 CHEMISTRY Inorganic chemistry (Paper-IX)

Sub. Code : 79682

Day and Date :Monday 23 - 10- 2023 Time : 10.30 a.m. to 12.30 p.m. **Total Marks : 40**

- Instructions : 1) All questions are compulsory.
 - 2) Figures to the right indicate full marks.
 - 3) Neat diagrams should be drawn wherever necessary.
 - 4) Use of scientific calculator and logarithmic table is allowed.
- Q1) A) Answer the following questions in one sentence.

[4]

- a) What is John-Teller distortion?
- b) Which impurity is doped to silicon crystal to form p-type semiconductor?
- c) What are metal carbonyls?
- d) Define the term Heterogeneous catalysis.
- B) Select the most correct alternative among the following and rewrite the sentence. [4]
 - a) According to Lux-Flood concept, bases are those species which can ____.
 - i) donate oxide ion ii) accept oxide ion
 - iii) donate proton iv) accept proton
 - b) In enzyme catalysis, for the fermentation of sugar to ethanol enzyme is used as a catalyst.
 - i) maltase ii) urease
 - iii) amylase iv) zymase

P.T.O.

c) An octahedral complex $[Co(NH_3)_6]^{3+}$ is a _____type of complex.

- i) high-spin ii) low-spin
- iii) moderate spin iv) spin-paired

d) According to band theory, a solid having maximum energy gap between valence band and conduction band is called _____.

- i) conductor ii) semiconductor
- iii) insulator iv) superconductor
- Q2) Answer the following (Any two).
 - a) What is catalysis? Explain types of catalysis with suitable examples.
 - b) State the basic assumptions of crystal field theory (CFT) and elaborate factors affecting the magnitude of crystal field splitting in corrdination complexes.
 - c) What is semiconductor? On the basis of Band theory, explain intrinsic and extrinsic semiconductors and give its applications.
- Q3) Answer the following (Any three).
 - a) Write a note on structure and bonding in $Ni(CO)_4$.
 - b) Define and explain with suitable examples Arrhenius acids and bases.
 - c) Write a short note on superconductivity.
 - d) Write a brief account on types of solvents.
 - e) Draw molecular orbital (MO) energy level diagram of $[Co(NH_3)_6]^{3+}$ complex.

-2-

[20]

[12]

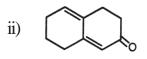
SM-1	6
Total No. of Pages	: 4

Seat No.

B.Sc. (Part-III) (Semester-V) (CBCS) Examination, October - 2023 CHEMISTRY Organic Chemistry (Paper-X)

Sub. Code : 79683

Day and Date : Wednesday, 25-10 - 2023Total Marks :40Time :10.30 a.m. to 12.30 p.m.Instructions : 1)All questions are compulsory.2)Figures to the right indicate full marks.3)Spectroscopic chart is allowed.


Q1) Select most correct alternative among those given below and rewrite the sentences.[8]

- a) In the electromagnetic spectrum, which region has the longest wavelength?
 - i) Ultraviolet 💦 ii) Infrared
 - iii) Visible iv) X-ray
- b) Which type of Spectroscopy is particularly useful for studying molecular vibrations?
 - i) UV-Vis Spectroscopy ii) X-ray Spectroscopy
 - iii) IR Spectroscopy iv) NMR Spectroscopy
- c) In UV-Visible spectroscopy, which type of electronic transition is responsible for the absorption of visible light?
 - i) $n \to \sigma^*$ ii) $n \to \pi^*$
 - iii) $\sigma \rightarrow \sigma^*$ iv) $\pi \rightarrow \pi^*$
- d) The shift of absorption band to shorter wavelength is called as _____
 - i) bathochromic shift ii) hypochromic shift
 - iii) hyperchromic shift iv) hypsochromic shift
- e) Which nucleus is commonly used in NMR spectroscopy?
 - i) Hydrogen (1 H) ii) Carbon (12 C)
 - iii) Oxygen (¹⁶O) iv) Nitrogen (¹⁴N)
- f) In a proton NMR spectrum, how many signals would you expect for a compound with the molecular formula C_4H_{10} ?
 - i) 3 ii) 2
 - iii) 4 iv) 5

- g) In mass spectrometry, ions are separated based on their____
 - i) Charge-to-mass ratio ii) Charge alone
 - iii) Mass alone iv) Size
- h) Molecular weight is determined by using____
 - i) NMR Spectroscopy ii)
 - iii) UV Spectroscopy iv) Mass Spectroscopy

IR Spectroscopy

- Q2) Attempt any two of the following:
 - a) Explain the fundamental modes of vibrations in IR Spectroscopy.
 - b) i) Explain the terms:
 - 1) Bathochromic shift
 - 2) Hypsochromic shift
 - ii) Explain the phenomenon of spin-spin coupling, with examples.
 - c) i) State and explain Beer Lambert Law and name the terms involved in its expression.
 - ii) Draw a neat labeled diagram of Mass Spectrometer and explain its working.
- Q3) Attempt any four of the following:
 - a) Calculate the λ_{max} value of following compounds by using Woodward fieser rule
 - i) (

- b) Write a note on McLafferty rearrangement.
- c) Deduce the structure of the compound using following spectral data MF: C₂H₆O
 IR : 3300 cm⁻¹
 PMR : δ 1.2 (triplet,3H); δ 3.7 (quartet,2H); δ 5.2 (singlet, 1H)
- d) Applications of Mass Spectroscopy.
- e) Write a note on Chemical Shift.

[20]

[12]

Nature of Dienes	λmax
Acyclic and Heteroannular dienes	214 nm
Homoannular dienes	253nm
Addition of each substituents	
-R(alkl, including part of carbocyclic ring)	+ 5 nm
-OR (alkoxy)	+ 6 nm
-Cl, -Br	+ 5 nm
-OCOR (acyloxy)	
-CH=CH- additional conjugation	+ 30 nm
If one double bond is exocclic to one ring	+ 5 nm
If exocyclic to two rings simultaneously	+10 nm
] Rules for α , β unsaturated aldehydes and ketones:	
B α	
Ketones — C=C-C=O	
Acyclic or 6-ring cyclic	215 nm
5- ring cyclic	202 nm
	\sim
Aldehydes— $C=C-C=O$ $ $ $ $ $ $	207 nm
	XIN
Acid/Ester_CH-O-C-R	197 nm

Proton	δppm	Proton	δppm
H ₃ CR	0.9		1.4
H ₃ C—C=C	1.7	C-CH ₂ -C-OR	2.2
H ₃ CC=O k	2-2.7		2.3
H ₃ C—S—	2.1		2.5
H ₃ C——Ar	2.3	C-CH ₂ -N	2.5
H ₃ C—N—R	2.3	C-CH ₂ Ar	2.7
H ₃ C—C—Ar II O	2.6	-C-CH ₂ -OR	3.4
H ₃ CNAr	3.0		3.2
H ₃ C—O—R	3.3	CCH ₂ Br	3.5
H ₃ C	3.7	C-CH ₂ Cl	3.6
H ₃ C—O-Ar	3.8	С-СН ₂ ОН	3.6
na da se ante a construction de la construction de la construction de la construction de la construction de la La construction de la construction de	مى بىر ئارىلىلەر يېرىكى يې يېرىكى يېرىكى	a lag <u>a</u> je s <u>e</u> na se postala se	and the second
Ar—H	7.3	—C-CH—C	1.5
R—C—H II O	9.0-10.0	C-CH-C-R II O	2.5
R—C—OH II O	10.5-12	——C-CH——N——	2.8
R—OH	0.5-4.5	CCH-Ar	3.0

SM - 30 Total No. of Pages : 2

Seat No.

B.Sc. (Part - III) (Semester - V) (CBCS) Examination, October - 2023 CHEMISTRY Physical Chemistry (Paper - XI) Sub. Code : 79684

Day and Date : Friday, 27 - 10 - 2023 Time : 10.30 a.m. to 12.30 p.m.

- Instructions : 1) All questions are compulsory.
 - 2) Figures to the right indicate full marks.
 - 3) Draw neat labelled diagrams and give equations wherever necessary.
 - 4) Use of scientific calculator and logarithmic table is allowed.

Q1 A) Answer the following in one sentence only.

- i) Define single electrode potential.
- ii) Define Rayleigh or elastic Scattering.
- iii) Define critical solution temperature or CST.
- iv) Define the Quantum yield (\emptyset).

B) Select the most correct alternative from the following. [4]

- i) In Concentration cells, emf is produced due to decrease in _____ accompanying the cell reaction.
 - a) enthalpy b) free energy
 - c) entropy d) kinetic energy
- ii) When the temperature coefficient of the cell becomes zero, the free energy change of the cell reaction is equal to _____.
 - a) zero b) enthalpy change
 - c) entropy change d) internal energy

P.T.O.

Total Marks : 40

[4]

de-Broglie equation is given as _____. iii) b) $\lambda = h / c$ E = hva) d) $\lambda = h / m$ c) $\lambda = h / mv$ Homogenous mixture of two or more chemical components is iv) known as a) solution b) solute c) solvent d) dilute solution

Q2) Attempt any Two of the following.

- a) Derive an expression for emf of an electrolyte concentration cell without transference.
- b) What are ideal solutions? Draw liquid-vapor composition curves for an ideal solution. Show with the help of this diagram that vapour is always richer in more volatile component.
- c) Discuss in detail Jablonski diagram.

Q3) Attempt any three of the following.

- a) Explain metal metal ion electrode.
- b) Calculate the emf of the cell at 298K,

 $Al_{(s)} |Al^{3+}|_{(aq)} (a=0.1) ||Ni^{2+}|_{(aq)} (a=1) |Ni_{(s)}|$ $E^{o}_{A1|3+|A1} = -1.66V, E^{o}_{Ni2+/Ni} = -0.236V$

- c) Explain the factours affecting on quantum yield.
- d) State and explain Raoult's law.
- e) Discuss Nicotine water system.

[20]

[12]

SM-44 Total No. of Pages :2

Seat No.

B.Sc. (Part-III) (Semester-V) (CBCS) Examination, October - 2023 CHEMISTRY

Analytical Chemistry (Paper-XII) Sub. Code : 79685

Day and Date :Monday 30 - 10- 2023 Time : 10.30 a.m. to 12.30 p.m. **Total Marks : 40**

- Instructions : 1) All questions are compulsory.
 - 2) Figures to the right indicate full marks.
 - 3) Draw neat labeled diagrams wherever necessary.
- Q1) Select most correct alternative among those given below and rewrite the sentence.[8]
 - a) An eluent releases the most strongly held bands on a column at _____
 - i) in betweenii) endiii) beginningiv) any way
 - b) For pH determination, the quinhydrone electrode works satisfactorily at _____pH values.
 - i) zero ii) high
 - iii) low iv) both i and ii
 - c) If ultraviolet light is used in the colorimetric measurement, the vessels or other optical parts of the system must be made of _____
 - i) quartz ii) corning glass
 - iii) borosil iv) glass
 - d) In good flame photometers ______detectors are used which produce an electrical signal from the radiation falling on them.
 - i) photomultiplier ii) photocell
 - iii) both i and ii iv) photoframe

- e) The amount of substance in its saturated solution in any solvent at given temperature is called as _____in that solvent.
 - i) molarity ii) solubility
 - iii) solubility product iv) pH

f) Water present on the surface of principate is called as _____

- i) water of hydration ii) sorbed water
- iii) occluded water iv) adsorbed water
- g) Linear or cross linked polystyrene resin having SO_3H group is used as
 - i) Strong cation exchanger ii) adsorbent
 - iii) anion exchanger iv) cation reducer
- h) _____burner is not used in flame photometry.
 - i) total consumption ii) Laminar flow
 - iii) spirit iv) Lundergarph
- Q2) Attempt any two of following.
 - a) Describe construction and working of quinhydrone electrode. Explain its use in determination of pH of solution.
 - b) What is gravimetric analysis? Explain in detail the process of precipitation, filtration, drying, ignition and weighing.
 - c) What is column chromatography? Explain the types of column chromatography. Give four applications of ion exchange chromatography.

Q3) Attempt any three of following.

- a) Applications of Flame photometry in real sample analysis.
- b) Applications of spectrophotometry
- c) Deviation from Beer's law.
- d) Interference in flame photometry
- e) Optimum conditions for good precipitation.

-2-

[20]

[12]

, oA