B. Sc. II, Semester IV, Examination (CBCS) March/April 2023 (held in June 2023)

Botany Paper VII: DSC D 13 : Plant Anatomy Subject code: 78910

Day and date: Monday, 19/06/2023

Time: 10.30	to 12.30 pm		Marks: 50
	All questions are compulso Figures to right indicate ful	l marks.	
	te the following sentences wit		[10]
1. Wha	at is the function of the intercal	ary meristem	
	a. to produce new leaves	b. to produce new flow	rers
	c. to produce new roots	d. to produce new stem	tissue
2. Whi	ich type of meristem is respons	ible for primary growth	
	a. apical meristem	b. lateral meristem	
	c. vascular meristem	d. cambium meristem	
3. Wha	at is the function of the cambiu	m meristem	
	a. to produce new leaves	b. to produce new flow	rers
	c. to produce new roots	d. to produce new vasc	ular tissue
4. Fou	r radial vascular bundle are fou	nd in	
	(a) dicot root	(b) monocot root	
	(c) dicot stem	(d) monocot stem.	
5. Whi	ich of the following is not a fun plants	-	ystem in
	a. protection against water los		
	c. absorption of nutrients	d. secretion of substance	ces
6. Mul	tiple epidermis is found in		•••••
	(a) Sugarcane leaf	(b) Nerium leaf	
	(c) Maize leaf	(d) Jawar leaf	

7. Wa	ter secreting glands in plant are	3	
	(a) Digestive glands	(b) Nectaries	
	(c) Hydathodes	(d) Epithelium cells	
8.Con	npanion cells are found in		••
	(a) Xylem	(b) Phloem	
	(c) stomata	(d) endodermis	
9. Co	ork is formed from		
	(a) cork cambium (phellogen) (b) vascular cambium	
	(c) phloem	(d) xylem.	
10. Tł	ne periderm includes		••••
	(a) secondary phloem	(b) cork	
	(c) cambium	(d) all of these.	
1. Des 2. Wh gro	nat is anomalous secondary growth in <i>Bignonia</i> stem.	y two) bundles with suitable examples. wth? Describe in brief anomalous sec	•
 Tur Cor Prir Ler Per 			[20]
	*******	*****	

B. Sc. II, Semester IV, Examination (CBCS)

March/April 2023 (held in June 2023)

Botany Paper VIII: DSC D 14: Plant Metabolism Subject code:78910

Day and date Time: 10.30	e: Tuesday, 20/06 to 12.30 pm	/2023	Marks: 50		
Instructions:	s: 1) All questions are compulsory. 2) Figures to right indicate full marks.				
Q. 1. Comple	te the following s	entences with correct alternative.	[10]		
1.The	term enzyme was	coined by			
	(a) Fischer (b) Koshland			
	(c) Kocher (d) Khune.			
2. Nor	n protein part of er	zyme is known as			
	a. apoenzyme	b. prosthetic group			
	c. metal ion	d. cofactor			
3. Con	version of No ₂ to	ammonia requires er	nzyme.		
	(a) nitrate reduct	ase (b) nitrite reduct	ase		
	(c) nitrogenase	(d) dehydrogenas	se.		
4. TC	A cycle takes place	e in			
	(a) cytosol	(b) chloroplast			
	(c) mitochondria	(d) peroxisome.			
5. Acc	ording to IUB enz	ymes are classified into	major class.		
	(a) seven	(b) five			
	(c) six	(d) eight			
6. Con	version of pyruvi	e acid to Acetyl Co A co fac	etor		
	(a) Mg ion	(b) Zn ion			
	(c) Fe ion	(d) Cu ion			

7. Root nodu	ule bacterium is iso	plated by	
	(a) Frank	(b) Robert	
	(c) Charls	(d) Beijrinck	
8. Maize grai	in shows	.type of seed germination	
	(a) epigeal (b	o) vegetative	
	(c) hypogeal (d	d) viviparous.	
9	is example of	f aerobic bacteria.	
	a) Azatobactor	b) Yeast	
	c) Riccia	d) Penicillium	
10	is dorman	ncy inducing hormone prevent seed germination.	
	(a) Abscisic acid	l (b) Gibberellic acid	
	(c) Ethylene	(d) Cytokinin	
1. Wh 2. Ex	nat is enzyme? Exp plain nitrate reduct	plain mechanism of enzyme action. tion process. Describe the steps in glycolysis.	[20]
1. Blu 2. Nit 3. Pro 4. Ca 5. Hy	short notes (Any for green algae in sy for genes operties of enzyme uses of seed dormat range of seed aerobic respiration	ymbiosis. ancy d germination.	[20]
	**	******	

B.Sc. Part II, Semester IV Examination (CBCS)

March/April 2023

Paper Number VII (Inorganic Chemistry)

Day and Date: Monday,12/0	06/2023		Marks: 50
Time: 10.30a.m12.30 p.m.			
Instructions: 1) All Questions	are Compulsary		
2) Figures to th	e right indicate full	marks.	
Que 1) Choose the correct a	alternative from th	e following and rewr	ite the sentences 10 Mark
i)[NiCl ₄] ²⁻ ion is			
a) Square planner	b) tetrahedral	c) tetragonal	d) octahedral
ii) More stable metal chelat	e generally contain	nsmembered ri	ng.
a) five	b) four	c) six	d) seven
iii)The structure of Ammon	ia is		
a) Angular b) tri	gonal pyramidal	c) tetrahedral	d) octahedral
iv) DMG is used to precipit	ate		
a)Fe b) Ni	c) Mg	d) Al	
v) Paramagnetismisassociat	ed with,		
a) Absence of electr	ons b)neither pai	ired nor unpaired e	lectronsc) paired electrons d)
unpaired electrons			
vi)chele means			
a) Scorpions legs b)	crabs claw c)fing	ers of hand d) studen	t
vii)Elements in which last e	electron enters the	orbital called P-bl	ock elements
i) s ii) d	iii) p iv)	f	
viii)Diamond is			
a) Diamagnetic b) hard	c) bad conductor	of electricity d) all o	f these
ix)Oxidation state ofMn in	KMnO4 is		
i) 5 ⁺ ii)	7 ⁺ iii) 6 ⁺	iv) 4 ⁺	
x)Oxallic acid isdentate	chelating agent.		

i) Mono b) bi c) tri d) tetra

Que 2. Answer the following (Any Two) 20

Mark

- a) Explain the applications of chelation with reference to EDTA and DMG
- b) What is mean by transition elements? Give the position of 3d series in the periodic table and write electronic configuration.
- c) What is solubility product? Give separation of Cl^- , Br^- and I^- by any one of the oxidation reduction methods.

Que 3. Answer the following questions (Any Four) 20 Mark

- a) Distinguish between Double salt and Complex salt
- b) Explain the structure of [FeF₆]³⁻ on the basis of VBT.
- c) Explain the structure of Diborane
- d) What is co-ordinate bond? Give the conditions for the formation of co-ordinate bond.
- e) Define and explain Common ion effect.
- f) What are the postulates of VBT?

B.Sc. Part II, Semester IV Examination (CBCS)

March/April 2023

Paper Number VII (Inorganic Chemistry)

Day and Date: Monday,12/06/2023			Marks: 50	
Time: 10.30a.m12.30 p.m.				
Instructions: 1) All Questions are Co	mpulsary			
2) Figures to the right i	indicate full marks.			
Que 1) Choose the correct alternat	ive from the follo	wing and rewrite th	e sentences 10 Mark	
i) Weight of solid sample used in s	semi-micro qualita	ative analysis range	s betweengram	
a) 0.1 to 1 b) 0.01 to 0.1 c) 0.	001 to 0.01	d) 0.0001 t	to 0.001	
ii) More stable metal chelate gener	ally contains	membered ring.		
a) five b) four	c) six	d) s	seven	
iii)element is a metalloid				
b) Pb b) Ge	c) C		d) Bi	
iv) DMG is used to precipitate				
a) Fe b) Ni	c) Mg		d) Al	
v) Paramagnetismisassociated with	1,			
b) Absence of electrons	b)neither paire	d nor unpaired elec	trons	
c) c) paired electrons	d) unpaired ele	ectrons		
vi)chele means				
b) Scorpions legs b) c	rabs claw	c)fingers of hand	d) student	
vii) Elements in which last electron enters theorbital called P-block elements				
ii) s ii) p iii) d	l iv) f			
viii) Oxidation state of metal is des	signated byin c	omplex name		
b) Arabic figure b) na	atural numbers	c) roman figures	d) Indian figures	
ix) Oxidation state of Cr in K ₂ Cr ₂ C	O ₇ is			
ii) 5^+ ii) 7^+ iii) 6^+ i	v) 4 ⁺			

x) Oxa	llic acid isdentate	chelating age	nt.		
ii)	Mono	b) bi	c) tri	d) tetra	
Que 2.	Answer the following	;	(Any Two)		20 Mark
	a) Describe the struc	ture of Boraz	ine		
	b) What are transition	on elements?	Give the position	n and electronic configu	ration of 3d
	series.				
	c).Explain the applica	tions of chela	ation with reference	ce to EDTA and DMG	
Que 3.	Answer the following	questions	(Any Four)	20 Mark	
a)Dist	inguish between Prima	ary Valency a	and Secondary Val	ency	
b)Expl	ain the structure of [Fe	$[eF_6]^{3-}$ on the eF_6	oasis of VBT.		
c)Expl	ain the allotrophs of ca	arbon			
d)Writ	e short note on Compl	ex formation.			
e)Wha	t are the postulates of	VBT?			
f)Write	e short notes on spot te	est analysis.			

Seat No.	

Total no. of pages: 2

B. Sc. (Part-II) (Semester-IV) (CBCS) Examination, March/April-2023

ENVIRON	METAL S	STUDIES (Compulsor	ry) (New)
	Sub	. Code: 78928	
Day and Date: Thursday, 2	2-06-2023		Total Marks: 70
Time: 1.00 pm to 4.00 pm			
Instructions: 1) All the que	stions are c	compulsory.	
2) Figures to	the right in	dicates full marks.	
Q 1) Select correct answer	from the giv	ven alternatives.	[10]
i. In which state of In-	dia, Radhan	agari wildlife sanctuary is	situated
a) Kerala		b) Karnataka	
c) Orissa		d) Maharashtra	
ii. Following is the	science of	interrelationship between	living organism and non-
living organism.			
a) Biology		b) Bio-Technology	
c) Ecology		d) Microbiology	
iii. Tsunami is caused	due to		
a) Earthquake	in sea	b) Cyclones	
c) Floods		d) Landslides	
iv. Which gas is respo	onsible for a	cid rain?	
a) Carbon dio	xide	b) Chlorine	
c) Carbon mor	noxide	d) Sulphur dioxide	
v. The role of plants is	n food chair	ı is	
a) Consumers		b) Decomposers	
c) Producers		d) None of these	
vi. World environmen	nt day is cele	ebrated on	
a) 14 March		b) 22 April	
c) 5 June		d) 17 September	
vii. Which movement	is related to	o forest conservation?	
a) Chipko		b) Save the Tiger	
c) Bhoodan		d) Narmada	

a) 97.2%	b) 93.2%				
c) 80.12%	d) 91.2%				
ix. Following type of the ecologica	l pyramid is always upright.				
a) Pyramid of Number	b) Pyramid of biomass				
c) Pyramid of energy	d) None of the above				
x. Which gas is responsible for deg	radation of ozone layer?				
a) Oxygen	b) Hydrogen				
c) Chlorofluorocarbon (CF	C) d) Sulphur dioxide				
Q 2) Answer any three of the following.		[15]			
a. Explain the concept of conservat	tion of biodiversity.				
b. Explain reasons of ozone layer of	legradation and its impact on environm	ent			
c. Describe methods of solid waste	management				
d. Impact of mining of environmen	d. Impact of mining of environment				
e. Explain impact of consumption of energy on the environment.					
Q 3) Write short notes on any three of the	he following.	[15]			
a. Importance of Forest					
b. Food web					
c. Deforestation					
d. Role of individual in prevention	of pollution.				
e. Importance of environmental stu	dies				
Q 4) What is natural disaster? Discuss disa	aster management in relation to drough	t. [10]			
	OR				
Describe soil pollution and its effe	ects on environment.				
Q 5) Give formation of environmental haz	ard of acid rain and ozone depletion.	[10]			
	OR				
What are sources of water pollution	on? Describe its effects and control mea	sures.			
Q 6) What is an environment? Describe re	asons of environmental degradation.	[10]			
	OR				
Describe reasons of sound pollution	on and its side effects.				
****	******				

viii. Percentage of water on the earth present in ocean is

Faculty: B. Sc. Examination CBCS B. Sc. II Semester IV March/April 2023(Held in June 2023)

Mathematics Paper VII Real Analysis II Subject code -78907

Day & Date: Friday, 16/06/2023

then

Time : 10.30 to 12.30 pm	Marks: 50			
Center: MatoshriBayabaiShripatraoKadamKanyaMahavidyalaya, Kadegaon				
Q1) Select the correct alternative for each of the				
1) If $s_n = \{-n\}_{n=1}^{\infty}$ then $\lim_{n \to \infty} \inf s_n = \cdots$				
a) 0	b) ∞			
c) -∞	d) 1			
2) The limit superior and limit inferior of the sequent respectively	ace {1,2,3,1,2,3,1,2,3,} are			
a) 3, 1	b) 1, 3			
c) 2,2	d) 0,3			
3) If $\{s_n\}_{n=1}^{\infty}$ is sequence of real numbers and if $\lim_{n\to\infty}$	$\max_{n \to \infty} \sup s_n = \lim_{n \to \infty} \inf s_n = \infty \text{ then }$			
a) s_n Converges to infinity	b) s_n Diverges to infinity			
c) s_n Converges to minus infinity	d) s_n diverges to minus infinity			
4) Limit of convergent sequence is L are				
a) unique b) more than one c) two	d) none of these			
5) The series $\sum_{n=1}^{\infty} \frac{1-n}{1+2n}$ is				
a) Not converges	b) Converges to zero			
c) Converges to $\frac{1}{2}$	d) converges to 1			
6) If $\sum u_n$ and $\sum v_n$ are two series of non-negative (independent of n) and there exists a positive integer				

a) $\sum u_n$ is convergent if $\sum v_n$ divergent b) $\sum u_n$ is convergent if $\sum v_n$ convergent

c) $\sum v_n$ is converger	In the interpretation of $\sum u_n$ diverging the interpretation $\sum u_n$ diverging $\sum u_n$	gent d) \sum	u_n is divergent if $\sum v_n$ divergent
7) Consider the statements			
I) every absolutely c	convergent serie	es is convergen	t
II) Every convergen	t series is absol	utely converge	nt.
a) Only I) is true			b) Only II) is true
c) Both I) and II) are	true		d) Both I) and II) are false
8) The positive p-series $\sum \frac{1}{n^p}$	is divergent fo	r	
a) $p < 1$	$p) p \leq 1$	c) $p \ge 1$	d) $p > 1$
9) A non-increasing sequen-	ce which is not	bounded below	V
a) Converges to 0c) Diverges to ∞		b) converge d) diverges	
$10) \lim \left\{ \left(\frac{n^2}{n+5} \right) \right\}_{n=1}^{\infty} = \dots$ $n \to \infty$			
a) 0 b) 1	1	c) ∞	d) -∞
Q2) Attempt any two of the following. [20]			
1) If $0 < x < 1$ then $\{x^n\}_{n=1}^{\infty}$	n=1 converges t	to 0	
2) Show that the series $\sum \frac{1}{n}$	does not conver	rges.	
3) If the alternating series u	$u_1 - u_2 + u_3 - u_3 - u_4 - u_4 - u_5 $	$u_4 + \cdots (u_n >$	0 for all n) is such that
i) $u_{n+1} \le u_n$; $\forall n$			
ii) $\lim_{n\to\infty} u_n = 0$ then the	series converg	es.	
Q3) Attempt any four of the	he following.		[20]
1) Test the convergent of th	e following ser	ies	
$i) \sum_{x^{n}+x^{-n}}^{1}, x>0$			
2) Show that every absolute	ely convergent	series is conve	rgent

3) Discuss the convergence of the following sequence

i)
$$\left\{\frac{3n}{n+7\sqrt{n}}\right\}$$
 ii) If $s_n = \left\{(-1)^n\right\}_{n=1}^{\infty}$ then find $\lim_{n \to \infty} \sup s_n$

- 4) If the sequence of real numbers $\{S_n\}_{n=1}^{\infty}$ is convergent then $\{S_n\}_{n=1}^{\infty}$ is bounded
- 5) Show that necessary condition for the convergence of an infinite series $\sum_{n=1}^{\infty}u_n$ is that $\lim_{n\to\infty}u_n=0$
- 6) If $\{s_n\}_{n=1}^{\infty}$ is sequence of real numbers and $\limsup_{n\to\infty} s_n = \liminf_{n\to\infty} inf s_n = L$ then $\{s_n\}_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} s_n = L$

Faculty: B. Sc. Examination CBCS B. Sc. II Semester IV March/April 2023(Held in June 2023) Mathematics Paper VII Real Analysis II

Real Analysis II Subject code -78907

Day & Date: Friday, 16/06/2023 **Time**: 10.30 to 12.30 pm Marks: 50 Center: MatoshriBayabaiShripatraoKadamKanyaMahavidyalaya, Kadegaon Q1) Select the correct alternative for each of the following: [10] 1) A non-increasing sequence which is not bounded below a) Converges to 0 b) converges to 1 c) Diverges to ∞ d) diverges to $-\infty$ 2) $\lim \left\{ \left(\frac{n^2}{n+5} \right) \right\}_{n=1}^{\infty} = \dots$ a) 0 b) 1 c) ∞ d) -∞ 3) If $\{s_n\}_{n=1}^{\infty}$ is sequence of real numbers and if $\limsup_{n\to\infty} s_n = \lim_{n\to\infty} \inf s_n = -\infty$ then a) s_n Converges to infinity b) s_n Diverges to infinity c) s_n Converges to minus infinity d) s_n diverges to minus infinity 4) Limit of convergent sequence is L are a) unique b) more than one c) two d) none of these 5) The series $\sum_{n=1}^{\infty} \frac{1+n}{1+2n}$ is ... a) Not converges b) Converges to zero c) Converges to $\frac{1}{2}$ d) converges to 1 6) If $\sum u_n$ and $\sum v_n$ are two series of non-negative terms and $k \neq 0$, fixed positive real number

(independent of n) and there exists a positive integer m such that $u_n \leq kv_n$ for every $n \geq m$

then

a) $\sum u_n$ is convergent if $\sum v_n$ divergent	b) $\sum u_n$ is convergent if $\sum v_n$ convergent
c) $\sum v_n$ is convergent if $\sum u_n$ divergent	d) $\sum u_n$ is divergent if $\sum v_n$ divergent
7) Consider the statements	
I) every absolutely convergent series is con	nvergent
II) Every convergent series is absolutely co	onvergent.
a) Only I) is true	b) Only II) is true
c) Both I) and II) are true	d) Both I) and II) are false
8) The positive p-series $\sum \frac{1}{n^p}$ is divergent for	
a) $p < 1$ b) $p \le 1$ c) $p \ge 1$	1 d) $p > 1$
9) If $s_n = \{n\}_{n=1}^{\infty}$ then $\lim_{n \to \infty} \inf s_n = \cdots$	
a) 0	b) ∞
c) -∞	d) 1
10) The limit superior and limit inferior of the sequence respectively	uence {1,2,3,1,2,3,1,2,3,} are
a) 3, 1	b) 1, 3
c) 2, 2	d) 0,3
Q2) Attempt any two of the following.	[20]
1) The positive term geometric series $\sum_{r=0}^{\infty} r^n \operatorname{conv}$	verges for $r < 1$ and diverges to infinity $r \ge$
2) Show that the sequence $\left\{ (1 + \frac{1}{n})^n \right\}_{n=1}^{\infty}$ is con-	vergent.
3) If the alternating series $u_1 - u_2 + u_3 - u_4 + \cdots$	$(u_n > 0 for \ all \ n)$ is such that
i) $u_{n+1} \le u_n$; $\forall n$	
ii) $\lim_{n\to\infty} u_n = 0$ then the series converges.	
Q3) Attempt any four of the following.	[20]
1) Discuss the convergence of the following seque	nce

i)
$$\left\{\frac{3n}{n+7\sqrt{n}}\right\}$$
 ii) If $s_n = \left\{(-1)^n\right\}_{n=1}^{\infty}$ then find $\lim_{n\to\infty} \sup s_n$

- 2) Show that every absolutely convergent series is convergent
- 3) Test the convergent of the following series

i)
$$\sum (\sqrt{n^4 + 1} - \sqrt{n^4 - 1})$$

- 4) If the sequence of real numbers $\{S_n\}_{n=1}^{\infty}$ is convergent then $\{S_n\}_{n=1}^{\infty}$ is Cauchy sequence
- 5) Show that necessary condition for the convergence of an infinite series $\sum_{n=1}^{\infty} u_n$ is that $\lim_{n\to\infty} u_n = 0$
- 6) If $\{s_n\}_{n=1}^{\infty}$ is sequence of real numbers and $\limsup_{n\to\infty} s_n = \liminf_{n\to\infty} s_n = L$ then $\{s_n\}_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} s_n = L$

.......

Faculty: B. Sc. Examination CBCS B. Sc. II Semester IV March/April 2023(Held in June 2023) Mathematics Paper VIII

Algebra II Subject code -78907

Day & Date: Friday, 16/06/2023

Time : 10.30 to 12.30 pr	n			Marks: 50
Center: MatoshriBaya	ıbaiShripatraoKada	amKanyaMahav	'idyalay	a, Kadegaon
Q1) Select the correct	alternative for each	of the following	;:	[10]
1) Factor group of a cy	clic group			
a) cyclic		b) abelia	n but no	t cyclic
c) neither abelia	n nor cyclic	d) abelia	n	
2) If H is a subgroup of	f a finite group G and	d o(G) = 30 & o(G)	(H)=3	then $[G:H] = \cdots$
a) 3	b) 12	c) 10	d) 9	
3) The order of symme	tric group S_3 is			
a) 3	b) 9	c) 6	d) 1	1.
4) One –one homomorp	hism is called			
a) isomorphism	b) monomorphis	sm c) epimorp	hism	d) endomorphism
5) the theorem that for	any integer a and pri	me p, $a^p \equiv a(m)$	odp) is	called
a) Fermat's theoc) Sylows theore		b) Euler's theor d) Lagrange's t		
6) Let H be a subgroup	and K be normal sul	bgroup of the gro	up G, th	en is normal in H
a) $H \cup K$	b) $H \cap K$	c) $H + K$	d) non	e of these
7) If G is a finite Group	and $aa \in G$ then			
a) $o(G)\setminus o(a)$	b) $o(a) \setminus o(G)$	c) $o(a) > o($	(G)	d) None of These
8) Every subgroup of an	abelian group is			
a) a normal subs	roup	b) abelia	n but no	t normal

	c) neither ab	elian nor normal	d) n	one of these	
9) A	homomorphic	image of a cyclic	group is		
	a) cyclic	b) non-cyclic	c) non-abelian	d) symmetric group	
10) V	Which of the fol	llowing are zero d	livisors in a ring (Z	$(1_{10}, \bigoplus_{10}, \bigcirc_{10})$	
	a) 5, 2	b) 10,1	c) 6,4	d) both (a) and (b)	
Q2) A	Attempt any tw	vo of the followin	ıg.	[20]	
1) Sho	ow that the cen	ter $Z(G)$ of group	G is a normal sub	group of G	
2) If <i>f</i>	$G: G \to G'$ is a h	nomomorphism, tl	nen Ker f is a norm	al subgroup of G.	
3) Sho	ow that if H is a	a subgroup of a f	inite group G then	o(H) divides o(H)	
Q3) A	Attempt any fo	our of the following	ng.	[20]	
1) Sho	ow that homom	norphic image of a	an abelian group is	abelian.	
2) Sho	ow that the inde	ex of any subgrou	p of a finite group	is a divisor of any order of	of the group.
		e group of integers te the element of	7	$\in Z$ } be subgroup of Z, w	where m is fixed
	ow that the set of the		er addition and mul	tiplication form a commu	itative ring
5) If a	is any integer	and p is prime the	$en a^p \equiv a(mod p)$		
6) The	e intersection o	of any two normal	subgroup of a grou	ip is also a normal subgro	oup.
77777777	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Faculty: B. Sc. Examination CBCS B. Sc. II Semester IV March/April 2023(Held in June 2023) Mathematics Paper VIII

Algebra II Subject code -78907

Day & Date: Friday, 16/06/2023

Time	: 10.30 to 12.30 p	m			Marks: 50
Cent	er: MatoshriBay	abaiShripatraoKa	damKanyaMa	havidyalay	a, Kadegaon
Q1) S	Select the correct	alternative for ea	ch of the follow	······································	[10]
1) th	e theorem that for	any integer a and I	$\text{prime p, } a^p \equiv a$	u(modp) is	called
	a) Fermat's thec) Sylows theor		b) Euler's the d) Lagrange	heorem e's theorem	
2) If	H is a subgroup o	f a finite group G a	and $o(G) = 36$	& o(H) = 3	then $[G:H] = \cdots$
	a) 3	b) 12	c) 4	d) 9	
3) If	G is a finite Grou	p and $aa \in G$ then			
	a) $o(G)\setminus o(a)$	b) $o(a) \setminus o(G)$	c) o(a) >	> o(G)	d) None of These
4) Eve	ery subgroup of a	n abelian group is.	• • •		
	a) a normal sub	group	b) ab	elian but no	t normal
	c) neither abeli	an nor normal	d) none of these		
5) Fa	actor group of a c	yclic group			
	a) cyclic		b) ab	elian but no	t cyclic
	c) neither abelia	nn nor cyclic	d) ab	elian	
6) Le	et H be a subgroup	and K be normal	subgroup of the	group G, th	en is normal in H
	a) $H \cup K$	b) $H \cap K$	c) $H + K$	d) non	e of these
7) Th	e order of symme	tric group S_3 is			
	a) 3	b) 9	c) 6	d) 1	

8) One –one homomorp	phism is called.			
a) isomorphism	b) monomo	orphism c) e	oimorphism	d) endomorphism
9) A homomorphic ima	age of a cyclic	group is		
a) cyclic t	o) non-cyclic	c) non-abelian	d) symme	etric group
10) Which of the follow	wing are zero d	ivisors in a ring	$(Z_{18}, \bigoplus_{18}, \bigcirc_{18})$)
a) 6, 3	b) 9,2	c) 6,4	d) both (a)	and (b)
Q2) Attempt any two	of the followin	g.	[20	0]
1) Show that if H is a si	ubgroup of a fi	nite group G the	n o(H) divides	o(H)
2) Every finite group G	is isomorphic	to a permutation	group.	
3) Show that the center	Z(G) of group	G is a normal su	bgroup of G	
Q3) Attempt any four	of the followir	ıg.	[2	20]
1) Show that HK is sub	ogroup of G if a	nd only if HK=K	H	
2) If a is any integer an	d p is prime the	$n a^p \equiv a (mod p)$))	
3) Let <z, +=""> be the graph positive integer. Write</z,>		5		group of Z, where m is fixed
4) Show that the set of with unity element 1.	integers Z unde	r addition and m	ultiplication f	orm a commutative ring
5) Show that homomor	phic image of a	n abelian group	is abelian.	
6) Show that the index	of any subgrou	of a finite grou	p is a divisor o	of any order of the group.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	······································

B.Sc. II, Semester IV Examination (CBCS)

March/April 2023 (Held in June 2023)

MICROBIOLOGY

Paper - VIII (DSC - D26): Basics in Medical Microbiology & Immunology Subject Code: 78914

Day and Date: Th Time: 10.30 to 12. Instructions: 1) A	Marks:50		
	igures to the right in		10
		<u> </u>	t with an antigen is called as
2) is an orga	b) Natural, passiv	ve c) Artificial, active trition from dead and deca	ying organic matter.
, 11	b) Host	increased by	d) commensals
	ion b) Enzymes	=	d) Acids
4) A person how h Carrier.	nas recovered from d	isease but continues to har	rbor the pathogen is called
		c) Convalscent	d) Healthy
	phagocytosis was dis		
,		c) Karl Landsteiner	
immune respon	se called	amune response itself but o	-
a) Antigen		c) Properdin	d) Epitope
	ed with enzymes are		
		c) Complement fixately transmission of nerve in	tion d) Neutralization inpulses are called
a) Exo	b) Endo	c) Neuro	d) Entero
,	ization is done by us	,	a) Entero
a) Vaccines		c) immune sera	d) toxins
		s called Infection.	2, 1111111
	b) Acute		d) Primary
Q.2 Attempt any t	two of the following	•	20
2) Define imm3) Define dise	nunity. Describe in d	brief different types of vir letail the various types of i orief epidemic, endemic, pa	immunity.
Q.3 Write a short	note (Any four).		20
 Clonal selection Morbidity r 	•		
3) Passive im			
4) Exotoxin.	manney.		
5) Types of an	tibodies.		

6) Mortality rate.

B.Sc. II, Semester IV Examination (CBCS)

March/April 2023 (Held in June 2023)

MICROBIOLOGY

Paper - VII (DSC - D25): Microbial Genetics & Molecular Biology Subject Code: 78914

Marks:50

Day and Date: Wednesday, 14/06/2023

	.30 pm Il Question are Comp igures to the right inc	~	
Q 1. Select the con	rrect alternatives fron	n the following.	10
1) Point mutation	involves		
a) Deletion		c) Duplication	d) Change in single base pair
2) X ray causes m	utation by		,
a) Deletion	b) Transition	c) Transversion	d) base substitution
3) is an init	tiation codon.		
a) AUG	b) UGA	c) UAG	d) UAA
4) Point mutation	involves		
a) Deletion	b) Insertion	c) Duplication	d) Change in single base pair
5)is a left-h	anded helical DNA.		
a) A	b) B	c) C	d) Z
	ells to take up DNA fr		
	b) transduction		
	different terms given t	for the methods of tra	ansmission of genetic
	nt occur in bacteria.		
	b) transduction		
,	•	•	ophage is known as
*	, , , , , , , , , , , , , , , , , , ,	c) transformation	, , ,
	in be eliminated from a	• -	
a) curing		c) fixing	d) expulsion
10) Ti plasmid are			
a) tumor inducing	g b) degradation	c) high copy nun	nber d) mammalian
Q.2 Attempt any	two of the following.		20
1) Discuss var	rious properties of gene	etic code	
	detail transfer of gene		288
	detail different forms		
,		or Divis.	20
Q.3 Write a short	notes (Any Four)		20
1) Spontaneou	is mutation.		
· •	ns of plasmids.		
3) Split genes			
4) Fate of exo			
5) Codons and			
6) Dark repair	mechanism.		

B.Sc. II Semester IV Examination (CBCS) March/April 2023 (held in June 2023)

Physics Paper –VII DSC-C2

Thermal Physics and Statistical Mechanics-II Subject code - 78908

	Marks: 50
•••••••••••••••••••••••••••••••••••••••	10
is	
b) $dU = TdS - PdV$	
d) dU = SdT + PdV	
s	
b) H = U - PV	
d) $H = TdS - PdV$	
b) positive	
d) infinite	
ottling process.	
b) Enthalpy	
d) Pressure	
b) \hbar^2	
d) ħ ⁴	
ond to the same macrostate.	
b) phase points	
d) space points	
	b) dU = TdS - PdV d) dU = SdT + PdV b) H = U - PV d) H = TdS - PdV b) positive d) infinite ottling process. b) Enthalpy d) Pressure b) \hbar^2 d) \hbar^4 ond to the same macrostate. b) phase points

7) For the distribution to be most probable,.....

a) W =0	b) $ln W = 0$	
c) δ (ln W) = 0	d) $\delta W = 0$	
8) Bose-Einstein statistics is obeyed	by	
a) electrons	b) gas molecules	
c) photons	d) neutrons	
9) Bosons are particles with	.spin.	
a) zero or integral	b) half	
c) any	d) negative	
10) Electrons are		
a) Bosons	b) photons	
c) fermions	d) neither Bosons r	nor fermions
 Q.2. Attempt any two of the follows State and explain thermodynamic p Derive Maxwell's Boltzman distriction State and explain Joule Thomson of during Joule Thomson effect. Q.3. Attempt any four of the follows Derive Clausius Claperon's equaticn Derive first and second Tds equaticn Compare MB,BE,FD statistics. Write short note on entropy and the Write short note on phase space. Explain concept of energy density. 	potentials. bution of momentum. effect. Obtain an expressiving on from Maxwell's therrons ermodynamic probability	20 modynamical relation. y.

B. Sc. II, Semester IVExamination (CBCS)

March/April 2023 (Held in June 2023)

Physics Paper -VIII -DSC-D2 Waves and Optics- II

Subject Code: 78908

Day and Date: Thursday, 15/6/2023 Time: 10:30 to 12:30pm			dode	7000	Maximum Marks: 50
Instru	ctions: 1) Att	tempt all que	stions.		
	2) Fig	ures to the ri	ght ind	icate full ma	nrks.
	3) Ne	at diagrams n	nust be	drawn whe	rever necessary.
1.Question	n: Select	the most o	orre	ct alterna	tive 10
I). Cardinal pla	anes with uni	t lateral magni	ification	n are	
a) Nodal j	olanes			b) Focal plan	nes
c) Principal planes				d) all the ab	ove planes
II). For a lens	system in air,	linear magnifi	ication	is 2, then the	angular magnification is
a) $\frac{1}{2}$	b) 2	c) $\frac{1}{4}$	d) 4		
III). A spectral	resolving po	wer of a prism	ı varies	with the base	e length (t) as
a) R. P αt	2	b) R. P $\alpha \frac{1}{t}$		c)R. P a t	d)R. P $\alpha \frac{1}{t^2}$
-		Rayleigh,s crit			the intensity at the dip ima.
a) 81	b) 40	c) 90		d) 45	
V). A natural l	ight from any	source is			
a) plane p	oolarized		b) circ	cularly polari	zed
c) elliptically polarized		d)unpolarized			
VI) By using w		phenomenon,	in Nicol	prism, ordin	ary light is removed from
a) Refle	ection		b) Ref	raction	
c) Tota	l internal refl	ection	d)Pola	rization	

VII). The path differ	rence $\lambda/4$ is ϵ	quivalent to p	hase difference	
a) $\pi/2$	b) $\pi/8$	$c)^{\pi}/4$	d) π	
VIII). In Newton's r	ings experim	ent , radius (r	n) of n th ring is p	roportional to
a) \sqrt{n}	b) 1	1^2	c)n	d) $\frac{1}{n}$
IX) In a zone plate,	radius of nth	zone is		
a) $\sqrt{nb \lambda}$	b) nb λ	c)πb λ	d)nπ	bλ
X) The fringes in st	raight edge d	iffraction patt	ern are	
a) formed in a g	eometrical sl	nadow region	b) equispa	ced
c) formed in an	illuminated r	egion	d) of equal	thickness
2. Attempt any	two of th	e followin	g	20
I) Describe Fresnel amplitude at a pe	-	•		expression for resultant
II) Define resolving power of plane of	-	-	ment. Obtain an	expression for resolving
			Obtain an expre From wedge shap	ession for fringe width of ed thin film.
3. Attempt any	four of th	ne followin	g	20
I) With neat ray	diagram, de	rive Newton's	formula for lens	system.
II) Compare zor	ne plate with	convex lens.		
III) Explain Lloy monochroma		rror experime	ent for determina	ation of wavelength (λ) of
IV) Describe po solution.	larimeter exp	eriment to de	termine specific	rotation of the sugar
v) State and exp	olain Rayleigh	a's criterion fo	r limit of resolut	ion.
VI) What is dou	ble refractior	n? Explain pos	itive and negativ	e crystals.

Seat	Total No. of Pages: 2
No.	

B.Sc. (Part – II) (Semester – IV) Examination (CBCS)
March/April 2023 (Held in June 2023)
ZOOLOGY (Paper - VII)
Reproductive Biology

Sub. Code:78911

Day and Date: Friday,16/06/2023 Total Marks: 50

Time: 10:30-12:30 pm

Instructi	ons: 1) All questions are co	mpulsory.			
	2) Figures to the right	indicate full marks.			
Q.1	Select the correct answer	er from the following	and rewrite complete sen	tence. 10 M	
1.	Corpus luteum produces.	••••			
	a) Luteinizing hormone	, <u> </u>	c) Luteotrophic hormone	e d) Inhibin	
2.	Sperms are mainly stored	in			
	a) Epididymis	b) Prostate gland	c) Bulbourethral gland	d) Urethra	
3.	Epispadia is an abnormality of				
	a) Prostate	=	c) Urinary bladder	d) Seminal vesicle	
4.	Menstrual flow occurs du	e to lack of	•	,	
	a) Vasopressin	b) Progesterone	c) FSH	d) Oxytocin	
5. The unpaired structure in the male reproductive system is				•	
		-	•		
	a) Testis	b) Seminal vesicle	c) Bulbourethral gland	d) Prostate gland	
6.	In retrograde ejaculation, the semen enters				
	a) Prostate gland	b) Epididymis	c) Seminal vesicle	d) Urinary bladder	
7.	Placenta is formed in hur	nans by			
	a) Amnion	b) Chorion		d) All of the above	
8.	In spermatogenesis, the reduction in number of chromosomes takes place in				
	a) Multiplication phase	b) Growth phase	c) Spermiogenesis	d) Maturation phase	
9.	Higher level of which hormone has a negative feedback effect on FSH?				
		roxine c) Adrer		d) Progesterone	
10.	Newly released mammalian egg has outermost covering of				
			c) Vitelline membrane		
Q.2	Attempt any two of following.			20M	
-					

- 1. What is parturation? Which hormones are involved in parturition?
- 2. Describe histological structure of human testis.
- 3. What are contraceptives? Describe IUD and oral contraceptives

Q.3 Attempt any four of the following.

- 1. Pregnancy diagnosis.
- 2. Write a note on seminal vesicles.
- 3. Write a note on vasectomy.
- 4. Corpus luteum
- 5. Describe hormonal regulation of spermatogenesis.

20M

	_
Seat	Т
No.	

Total No. of Pages: 2

SHIVAJI UNIVERSITY, KOLHAPUR

B.Sc. (Part – II) (Semester – IV) Examination (CBCS)
March/April 2023 (Held in June 2023)
ZOOLOGY (Paper - VIII)

Applied Zoology Sub. Code:78911

•	d Date: Saturday,17/06/2023 Total Marks: 50 10:30-12:30pm				
Instructi	ons: 1) All questions are compulsory.				
	2) Figures to the right indicate full marks.				
Q.1	Select the correct answer from the following and rewrite complete sentence.				
1.	is an organism which provides shelter and nourishment for parasite. a) Parasite b) Host c) Animal d) Virus				
2.	Typhoid fever spread through				
3.	c) Contaminated water and food by typhoid bacteria d) Fecal and oral rout of infected person Poultry birds needs moderate temperature of about				
4.	The obtain various benefits such as shelter, nutrition, reproduction and development from host.				
5.	a) Hosts b) Human c) Pig d) Parasites Steptomycin and PAS (para aminosalicylic acid) anti microbial agent used to treat				
6.	a) Tuberculosis b) Typhoid c) Dysentery d) laprosy The common name of <i>Helicoverpa armigera</i> is				
7.	a) Sugarcane borer b) pulse beetle c) Cotton bollworm d) Rice weevil <i>Rickettsia prowazekii</i> belongs toa) spotted fever group b) Typhus fever group c) Yellow fever d) Rocky mountain spotted fever				
8.	Papilio demoleus is a common pest of a) Stored grains b) citrus plants c) sugarcane d) cotton				
9.	Borrelia recurrentis and Treponema pallidum, these two are pathogenic				
10.	In Sitophilus oryzae larval and pupal stage are completed in the				
Q.2	Attempt any two of following. 20M				
1.	Describe Biology, Control and damage caused by <i>Helicoverpa armigera</i> .				

Describe the Transmission, Prevention, and control of tuberculosis.

3. Give an account on Zoonosis and explain its types giving classification.

Q.3 Attempt any four of the following.

- 1. Commensalism
- 2. Treatment of Typhoid fever.
- 3. Life Cycle of Callosobruchus chinensis
- 4. Coronavirus disease.
- 5. Nutrients of poultry birds.

20M