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The a-Ni(OH)2-CNT composite films have been successfully synthesized by a simple chemical method
and their supercapacitive properties were investigated by variation of CNT. The structural, compositional,
morphological, wettability and electrochemical properties of the composite films were studied by using
various characterization techniques. X-ray diffraction analysis revealed that the synthesized composite
films are polycrystalline in nature. FT-Raman spectroscopy result showed the characteristic Raman band
of CNT and a-Ni(OH)2 which confirmed the formation of a-Ni(OH)2-CNT composite. SEM micrographs
showed porous microstructure of the synthesized films and hydrophilic nature of the films was con-
firmed from wettability studies. Furthermore, the effect of the variation of CNT on the electrochemical
properties of the synthesized composite films was discussed. The electrochemical performance of the
composite films was studied by using cyclic voltammetry (CV) and Galvanostatic charge–discharge
(GCD) techniques. The a-Ni(OH)2-CNT composite showed highest specific capacitance of 544 F g�1 with
high retention capability of 85% after 1500th cycle and excellent cycling stability.

� 2019 Published by Elsevier B.V. on behalf of The Society of Powder Technology Japan. All rights
reserved.
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1. Introduction

Electrochemical supercapacitor has raised a great attention for
high power energy storage applications because of their excellent
cycling strength and high power density [1,2]. Also, it store energy
in the form of electric charges which are environmentally friendly.
Depending upon the charge storage mechanism, supercapacitor
can be divided into two type’s viz electrochemical double layer
capacitor (EDLC) and pseudocapacitor [1,3]. However, pseudoca-
pacitor has been extensively focused as compared to EDLC owing
to their high specific capacitance [2]. The various pseudocapacitive
materials, such as transition metal oxides/hydroxides like RuO2,

MnO2, NiO, Ni(OH)2, and Co(OH)2 has been successfully used as
electrode materials for supercapacitor applications [4–8]. Among
these materials, Ni(OH)2 has been widely studied for supercapaci-
tor applications by reason of its high theoretical specific capaci-
tance, relatively good chemical stability and environmentally
79

80

81

82

83
friendly nature [9]. But still have limitations in practical applica-
tions because of its low energy density (ED) and low electrical con-
ductivity. By considering these limitations, the development of
new advanced composite electrode material for supercapacitor
applications is a need of an hour. Recently, carbon based materials
are extensively used for electrochemical capacitor applications to
enhance their supercapacitive performance. It ranges from acti-
vated carbon (AC) to carbon nanotube (CNT) [10–12]. Especially,
CNT has been found to be an excellent form of carbon over the
other carbonaceous materials and have attracted an extensive
attention to prepare composite with metal oxides/hydroxides for
supercapacitor electrodes because of its high electrochemically
accessible surface area, excellent chemical stability and low resis-
tivity [13,14]. Additionally, CNT is used to alter the physical prop-
erties of metal oxides that are used for various applications such as
solar cells [15], electrochromism [16], electrochemical sensors [10]
and supercapacitors [17], respectively.

M. Kazazi et al. [18] have prepared nanoflakes nickel oxide-
carbon nanotube (NiO-CNT) composite thin films by elec-
trophoretic deposition for high-performance pseudocapacitor
applications. They have reported that the prepared NiO-CNT com-
posite electrode exhibited excellent pseudocapacitive behavior
ication,
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with a high specific capacitance of 786 F g�1 and 89.8% of capaci-
tance retention after 1000th cycles as compared to pure NiO elec-
trode. They have concluded that the uniformly dispersed CNT in
the electrode that can provide fast and easy conductive pathway
for transport of electrons into the active area of electrode material.
Cheng et al. [17] have facile synthesized Ni(OH)2/CNTs nanoflake
composites, which showed improved performance for supercapac-
itor applications and gives a specific capacitance of 720 F g�1. They
have reported the better progress in electrochemical performance
due to the synergetic effect of hydroxides and CNTs. Dai et al.
[19] have synthesized CNT-NiO nanocomposite by chemical con-
version route and exhibited the high specific capacitance of 759 F
g�1 in 6 M KOH electrolyte due to the synergistic effects.

In the present manuscript, a simple chemical bath deposition
(CBD) technique is used for the preparation of nickel hydroxide
powder. After that an easy and cost-effective doctor blade method
is used for the synthesis of a-Ni(OH)2-CNT composite films and
their supercapacitive properties have reported. Such an easily syn-
thesized electrode gives the high specific capacitance with remark-
able rate ability and excellent cycling strength in 1 M KOH
electrolyte. Also, the effect of CNT variation on the electrochemical
properties of the as-prepared a-Ni(OH)2-CNT composite films is
studied systematically and reported.

2. Experimental details

2.1. Synthesis of a-Ni(OH)2-CNT composite films

The chemicals were of analytical grade (AR) used without fur-
ther purification. Multi-walled carbon nanotube (MWCNT) was
purchased from Monad Nanotech Pvt. Ltd., Mumbai, and used
without further purification. For preparation of the precursor solu-
tion, double-distilled water (DDW) was used. Scheme 1 represents
Scheme 1. Schematic of the steps involved for the synthesis of flow

Please cite this article as: S. B. Abitkar, P. R. Jadhav, N. L. Tarwal et al., A facile s
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the steps involved for the synthesis of flower like microstructure a-
Ni(OH)2-CNT composite film. Initially, the nickel hydroxide powder
was prepared by using chemical bath deposition (CBD) method. In
this process, nickel sulfate (NiSO4�6H2O) as a nickel precursor,
potassium persulfate (K2S2O8) as an oxidizing agent and aqueous
ammonia as a complexing agent were used. In particular, 20 ml
nickel sulfate (0.6 M) solution and 15 ml potassium persulfate
(0.25 M) solution were mixed in a 100 ml beaker and stirred well
at room temperature till its absolute dissolution and then get green
colored solution. Further, aqueous ammonia was added slowly into
the stirring solution to get pH 10.8 of the solution. Afterward, the
brown color precipitating solution was formed in a 100 ml beaker.
This obtained precipitate was filtered by using Whatman filter
paper and again washed several times with double distilled water
to remove the unwanted impurities. Finally, this washed precipi-
tate was dried for 24 h at room temperature. Following this proce-
dure the brown color nickel hydroxide powder was collected.

Further, the mixture of 0.5 g as-synthesized nickel hydroxide
powder, 0.05 g polyvinilidene fluoride, 0.025 g CNT and a small
amount of N-methyl-2-pyrrolidone was ground in agate mortar till
the paste was formed. This paste was deposited on stainless steel
substrate by doctor blade method followed by annealing at
300 �C for 1 h in an ambient atmosphere to remove the binders.
The resulting product a-Ni(OH)2-CNT was denoted as composite
film NC-1. The above procedure was repeated by addition of
0.05 g, 0.075 g and 0.1 g CNT and these synthesized films were
denoted as composite films NC-2, NC-3 and NC-4, respectively.

2.2. Materials characterization

The identification of phase and crystalline structure of compos-
ite films were characterized by D2 PHASER, Bruker, X-ray diffrac-
tometer with Cu-Ka radiation (k = 1.5406 Å) over 10�-90�. FT-
erlike porous microstructure a-Ni(OH)2-CNT composite film.

ynthesis of a-Ni(OH)2-CNT composite films for supercapacitor application,
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Raman spectrum was recorded by using Bruker Multi RAM, Ger-
many over 200–2000 cm�1 excited with the Argon 488 nm laser
source obtained at room temperature. Surface morphological anal-
ysis of the synthesized composite films was carried out by using
JEOL JSM-6360 Japan made scanning electron microscopy (SEM).
The identification of the elements onto the surface of composite
film was analyzed by energy dispersive X-ray analysis (EDX) con-
nected with FE-SEM instrument (FE-SEM, TESCAN). Wettability
analysis of the composite films was studied by using Holmarc’s
contact angle meter (model no: HO-IAD-CAM-01). Electrochemical
measurements (Cyclic Voltammetry, galvonostatic charge dis-
charge and electrochemical impedance spectroscopy analysis)
were carried out in 1 M KOH electrolyte by using Metrohm’s Auto-
lab 320 N with three-electrode cell method, wherein graphite and
the saturated calomel electrode (SCE) were used as a counter and
the reference electrode, respectively. The composite film a-Ni
(OH)2-CNT was prepared by doctor blade method and used as
working electrode.
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3. Results and discussion

3.1. XRD studies

Fig. 1(a–d) shows the XRD patterns of NC-1, NC-2, NC-3 and NC-
4 composite films respectively. It clearly shows that all the films
are polycrystalline in nature. The diffraction peaks are located at
12.2�, 33.5�, and 59.6�, along the (0 0 3), (1 0 1) and (1 1 0) planes
respectively, which clearly corroborates the structure of pure a-
Ni(OH)2 phase [18]. Furthermore, the observed and calculated ‘d’
values of diffraction peaks for a-Ni(OH)2 are matched well with
standard JCPDS card no. 38-0715. Also, it is seen that, there is a pre-
dominant diffraction peak located at 26.1� along the (0 0 2) plane,
which confirms the formation of CNT. The corresponding ‘d’ value
of diffraction peak for CNT is matched well with standard JCPDS
card No. 75-1621 with hexagonal phase [18,20]. The above XRD
results clearly confirms the formation of a-Ni(OH)2-CNT compos-
ite. Also, in XRD pattern the stainless steel peaks are observed at
43.14�, 44.07�, 50.27� and 74.20�, respectively which are indexed
by symbol *. The crystallite size of the composite films is calculated
by using the Scherrer’s relation [21].
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Fig. 1. X-ray diffraction patterns of Ni(OH)2-CNT composite films: (a) NC-1, (b) NC-
2, (c) NC-3 and (d) NC-4.
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D ¼ 0:9k
b cos h

ð1Þ

where D is the crystallite size in nm, k is an incident X-ray
wavelength of Cu Ka line, b is the full-width half-maximum
(FWHM) of the diffraction peak and h is the Bragg’s diffraction
angle in degree. The calculated value of crystallite size for all the
composite films is found to be in the range of 30–36 nm. Jahromi
et al reported that the influence of nickel oxide nanoparticles on
the supercapacitive performance [22].

3.2. Raman spectroscopic analysis

The Raman spectrum of NC-4 composite film is shown in Fig. 2.
Three distinct peaks are observed at 503, 1331 and 1586 cm�1.
Raman peak at 503 cm�1 corresponds to vibrational lattice mode
of Ni-OH and confirms the formation of a-Ni(OH)2 [20]. The two
bands at 1331 cm�1 (D band) and 1586 cm�1 (G band) reveal the
typical CNT bands [23,24]. Raman band at 1586 cm�1 originates
from Raman active in-plane atomic displacement E2g mode [23].
The Raman profile shows the formation of a-Ni(OH)2-CNT compos-
ite film without impurities. The results analyzed from Raman anal-
ysis are well consistent with XRD analysis.

3.3. Morphological studies and energy dispersive X-ray (EDX) analysis

Fig. 3(a–d) represents the SEM micrographs of all synthesized
a-Ni(OH)2-CNT composite films such as NC-1, NC-2, NC-3 and
NC-4, respectively. In synthesis process, the mixture of Ni(OH)2
and CNT was ground in agate mortar to form strong adhesion
between them and also the quantity of Ni(OH)2 was more than
that of CNT in the composite. Consequently the CNT merged into
the Ni(OH)2 surface and formed together as flower-like porous
microstructures as seen in Fig. 3 (b-d), suggesting that the struc-
tural interaction as well as porosity of the composite film is pre-
served well after addition of CNT [25,26]. Moreover it is seen
that, these microstructures are getting agglomerated well because
of strong interactions between Ni(OH)2 and CNT due to grinding,
and formed the abundant hollow spacing in the composite, which
is increased gradually with addition of CNT [25,27]. This unique
morphological surface provides more electrochemically active sites
to increase the interfacial contact area between electrode surface
and electrolyte for an easy ionic transportation during charging-
discharging processes, and consequently enhances the electro-
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Fig. 2. Raman spectrum of a-Ni(OH)2-CNT composite film (NC-4 composite film).
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chemical properties of the material, which is beneficial for super-
capacitor application [18]. Fig. 4 illustrates that the typical EDX
spectrum of the synthesized composite film NC-4. The prominent
peaks of Ni, O and C elements are clearly visible in EDX spectrum
which confirms the synthesized film is composite of Ni(OH)2 and
CNT. The compositional values in atomic percentage of Ni, O and
C elements are observed as 14.73, 53.71 and 31.56, respectively.

3.4. Wettability studies

Wettability analysis of the composite film is empirically evalu-
ated by the measurement of contact angle (h) between water dro-
plet and the surface of the film. The water contact angle value is
directly related to the chemical composition, presence of local
inhomogeneity’s and geometrical surface of the films. A water con-
tact angle (h) should be less than 90� consisting of hydrophilic sur-
face of the material. Fig. 5(a–d) represents the water contact angle
images of all synthesized composite films NC-1, NC-2, NC-3 and
NC-4 respectively. The measured contact angle values of all the
films indicate hydrophilic surface which is more important param-
eter for good performance of electrode material. The SEM micro-
graph of all composite films shows the presence of abundant
hollow spacing around the porous microstructures. A water droplet
placed on this unique surface is absorbed by these hollow spacing
and porous microstructures and then improve the hydrophilic sur-
face of the composite. Also, the hydroxide group present in the a-
Ni(OH)2-CNT composite may help the absorption of ions to
improve the hydrophilicity of the CNT [2]. So the contact angle of
water drop on a-Ni(OH)2-CNT composite film decreases with addi-
tion of CNT. Shaikh et al. [28] reported that the surface of CPCNT
films transform from hydrophobic to hydrophilic (120 to 65�) with
annealing temperature. Yu et al. [29] reported that the contact
angle of 16.3�was obtained with the 7 wt% of CNT content. Ouyang
et al. [30] reported that the Ni-Ag/SWCNTs/GCE composite elec-
Please cite this article as: S. B. Abitkar, P. R. Jadhav, N. L. Tarwal et al., A facile s
Advanced Powder Technology, https://doi.org/10.1016/j.apt.2019.07.008
trode exhibited the best hydrophilicity due to the smallest contact
angle of 30.8�. In the present case, the composite film NC-4 gives
lower contact angle value of 57� containing superior hydrophilic
surface, which provides the high effective surface area that can
improve conductivity of the material by reducing the effective
resistances during ionic exchanging process at electrode-
electrolyte interface. The hydrophilic behavior of the film permits
an easier access for redox reactions which is beneficial for superca-
pacitor applications. Also, such an important parameter plays an
effective role for reducing diffusion path length of the ions during
charge-discharge processes [31].

3.5. Cyclic voltammetry (CV) studies

By CV and GCD measurements the capacitive nature of the
material can be examined. Fig. 6(a–d) shows the cyclic voltammo-
grams (CV) curves of all a-Ni(OH)2-CNT composite films i.e. NC-1,
NC-2, NC-3 and NC-4, respectively at different scan rates from 10
to 100 mVs�1. The CV curves were recorded in the potential win-
dow of�1.0 V to 0.4 V vs SCE in 1 M KOH electrolyte. It is seen that,
the recorded CV curves of all composite films are nearly identical
and exhibit a quasi rectangular shape with an oxidation and reduc-
tion peaks respectively, which implies an ideal pseudocapacitive
characteristic of the material [32]. Also, the charge-discharge pro-
cesses of the films are associated with an oxidation and reduction
pair. The corresponding faradaic redox reaction in which anodic
peak at 0.3 V vs SCE correspond to the oxidation of a-Ni(OH)2 to
c-NiOOH, whereas the cathodic peak at �0.5 V vs SCE correspond
to the reverse process is given as follows [32]:

a-Ni(OH)2 + OH— = c-NiOOH + H2O + e— ð2Þ
From Fig. 6(a–d) it is seen that, the area under the CV curve
increases with increasing the scan rate from 10 to 100 mVs�1 which
reveals that the voltammetric current is directly proportional to the
ynthesis of a-Ni(OH)2-CNT composite films for supercapacitor application,
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scan rate [33]. Moreover, the current density of both anodic and
cathodic peaks smoothly increases by increasing the scan rate but,
there is no any apparent changes in the shape of the CV curves
which, signify lowest contact resistance of the electrode for better
electrochemical processes [34]. Nevertheless, the specific capaci-
tance of the composite film decreases with increasing the scan rate
because of moderated reaction mechanism between electrode-
electrolyte interfaces. Fig. 7 shows the collectively depicted CV
curve of all synthesized composite films NC-1, NC-2, NC-3 and
NC-4, respectively measured at a constant scan rate of 10 mVs�1

in 1 M KOH electrolyte. It indicates that an area under the CV curve
of the composite films increases with increasing the quantity of the
CNT. The CV curve area is used to calculate the specific capacitance
of the composite film by using the following equation [35], and pre-
sented in Table 1.

Cs ¼
R
i dv

2ðmÞðDVÞðVsÞ ð3Þ

where Cs is the specific capacitance, ʃ i dv is the area of the CV
curves within the assigned potential range, m is the mass of the
active material on a substrate, DV is the potential window, and Vs
Please cite this article as: S. B. Abitkar, P. R. Jadhav, N. L. Tarwal et al., A facile s
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is the scan rate. It is seen that the composite film NC-4 acquire high-
est area under the CV curve which provides the highest specific
capacitance of 544 F g�1 as compared to other composite films.
Hence, it corroborates, the role of CNT is important to increase
the specific capacitance of the composite film. The NC-4 sample
exhibits lowest water contact angle and maximum surface area
which offer the large number of electrochemical active sites for
the intercalation of ions from the electrolyte to the surface of the
electrode and hence faster diffusion into the active electrode mate-
rial takes place.

3.6. Galvanostatic charge-discharge (GCD) studies

The GCD study is very important for resolving the charge-
discharge stability, energy density and power density of the mate-
rial. Fig. 8(a–d) shows the charge-discharge curves of all a-Ni
(OH)2-CNT composite films i.e. NC-1, NC-2, NC-3 and NC-4, respec-
tively at constant current density of 1 mA/cm2 were recorded in
the potential window of �1.0 V to 0.4 V vs SCE in 1 M KOH elec-
trolyte. All the GCD curves are seen as non-triangular in shape
which confirms the faradaic (pseudocapacitive) behavior of the
ynthesis of a-Ni(OH)2-CNT composite films for supercapacitor application,
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Fig. 6. Cyclic voltammograms of a-Ni(OH)2-CNT composite films: (a) NC-1, (b) NC-2, (c) NC-3 and (d) NC-4 in 1 M KOH electrolyte at various scan rates.
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Fig. 7. Cyclic voltammograms of a-Ni(OH)2-CNT composite films: (a) NC-1, (b) NC-
2, (c) NC-3 and (d) NC-4 in 1 M KOH electrolyte at constant scan rate of 10 mV/s.

Table 1
Electrochemical performance evaluated for a-Ni(OH)2-CNT composite films.

Sample code Sp. capacitance by CV (F/g) Sp. capacitance by CD (F/g)

NC-1 380 364
NC-2 421 427
NC-3 472 480
NC-4 544 537
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electrode material [36]. From the slope of GCD curves, it is seen
that the composite film NC-4 shows a longer discharging time
and gives maximum specific capacitance of 537 F g�1 at 1 mA/
cm2. The specific capacitance (Cs), energy density (E) and power
density (P) of the composite films is calculated from discharge
curves, according to the following equation [37],

Cs ¼ I
mðDV=DtÞ ð4Þ

E ¼ 1
2
CðDVÞ2 ð5Þ

P ¼ E
Dt

ð6Þ

where, I – applied current, m – mass of the deposited material onto
the electrode, DV – discharge voltage range and Dt – discharge
time. The calculated values of specific capacitance, energy density
and power density of composite films are presented in Table 1.
From Table 1 it clear that, the specific capacitance of a-Ni(OH)2-
Energy density (Wh/kg) Power density (kW/kg) Rct (X)

13.48 3.10 9.20
15.71 3.67 7.80
17.82 3.90 6.62
21.25 4.78 3.32

ynthesis of a-Ni(OH)2-CNT composite films for supercapacitor application,
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Fig. 8. Galvanostatic charge discharge curves of a-Ni(OH)2-CNT composite films:
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0 10 20 30

0

15

30

45

60
a
 b
 c
 d

-Z
"( Ω

)

Z'(Ω )

Fig. 10. Nyquist plot of a-Ni(OH)2-CNT composite films: (a) NC-1, (b) NC-2, (c) NC-
3 and (d) NC-4 in 1 M KOH electrolyte.
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CNT composite films are improved due to the contribution of con-
ductive nature of CNT, which provides higher accessible active sites
for fast redox process. The stability test measurement is carried out
for optimized NC-4 composite film in 1 M KOH electrolyte and the
recorded curves are shown in Fig. 9. It is seen that the capacitive
retention varies with the cycle number. The 85% capacitance reten-
tion is observed after 1500th cycle for typical composite film NC-4.
The stability test indicates that, the composite film a-Ni(OH)2-CNT
attains good cycling capacity in 1 M KOH electrolyte and hence it is
a powerful electrode material for electrochemical mechanism. Also,
from Fig. 9 it is seen that, only 13% capacitive loss is occurred in an
initial capacitance after 1000th cycle which reveal the remarkable
rate capacity of a-Ni(OH)2-CNT composite electrode.

3.7. Electrochemical impedance spectroscopy (EIS) studies

The EIS studies are being performed to understand the reaction
kinetics of the material and to evaluate their overall resistance
379

380

0 300 600 900 1200 1500
0

20

40

60

80

100

-1.2 -0.8 -0.4 0.0 0.4 0.8

-3

-2

-1

0

1

2  1st cycle
 100th cycle
 200th cycle
 300th cycle
 400th cycle
 500th cycle
 600th cycle
 700th cycle
 800th cycle
 900th cycle
 1000th cycle
 1100th cycle
 1200th cycle
 1300th cycle
 1400th cycle
 1500th cycleC

ur
re

nt
 D

en
sit

y 
(m

A
/c

m
2 )

Potential (V vs SCE)

C
ap

ac
ita

nc
e 

re
te

nt
io

n 
(%

)

Cycle number

Fig. 9. Variation of specific capacitance (%) with respect to cycle numbers for a-Ni
(OH)2-CNT composite film (NC-4 composite film) in 1 M KOH electrolyte at a scan
rate of 100 mV/s for 1500 cycles.
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components. In EIS analysis the larger diameter semicircle
observed in the high frequency region is related to the higher
charge transfer resistance (Rct) of the electrode-electrolyte inter-
face and an inclined straight line behavior observed in the low fre-
quency region which corresponds to the limiting ion diffusion
process [38]. Fig. 10(a–d) shows the Nyquist plot of a-Ni(OH)2-
CNT composite films NC-1, NC-2, NC-3 and NC-4, respectively in
the frequency range from 10 mHz to 1 MHz for 1 M KOH elec-
trolyte. The EIS analysis exhibited that, the decrement in Rct value
of composite films which are given in Table 1. It indicates that the
improvement in conductivity of the electrodes due to the addition
of CNT in the composite [26]. It is observed that, the composite film
NC-4 exhibits smaller semicircle provides lowest charge transfer
resistance of the electrode-electrolyte interface and the higher
slope offer the minimum ion diffusion resistance. Thus, the com-
posite film NC-4 gives a very low Rct value 3.32X implying its high
conductivity and high capacitance as compared to the other com-
posite films [34,39].
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4. Conclusions

A flowerlike porous microstructure of a-Ni(OH)2-CNT compos-
ite films have been synthesized by a simple and inexpensive doctor
blade method. The composite films showed excellent supercapac-
itor properties in 1 M KOH electrolyte. X-ray diffraction analysis
showed that the composite films are polycrystalline in nature.
FT-Raman analysis confirms the well formation of a-Ni(OH)2-CNT
composite. Morphological studies shows porous microstructure
of the synthesized films and the wettability studies shows superior
hydrophilic surface of the composite film (NC-4). The electrochem-
ical analysis showed that the a-Ni(OH)2-CNT composite film (NC-
4) gives highest specific capacitance of 544 F g�1 and higher reten-
tion capability of (85%) after 1500th cycle. Moreover, it exhibited
the high energy density of 21.25 Wh/kg and high power density
of 4.78 kW/kg. From EIS measurements it confirmed that the a-
Ni(OH)2-CNT composite electrode provides very lowest charge
transfer resistance (3.32X) of the electrode-electrolyte interface
implying higher conductivity of the material. Thus, it is concluded
that, the a-Ni(OH)2-CNT composite film (NC-4) is more appropri-
ate material for supercapacitor applications.
ynthesis of a-Ni(OH)2-CNT composite films for supercapacitor application,
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